- 相关推荐
新北师大版五年级数学下册教案(精选15篇)
作为一位杰出的老师,时常需要编写教案,教案是教学活动的依据,有着重要的地位。那么优秀的教案是什么样的呢?下面是小编为大家收集的新北师大版五年级数学下册教案,欢迎阅读与收藏。

新五年级数学下册教案 1
课程目标
(1)结合具体情境,理解分数加减法的算理,掌握它们的计算法则,并能正确熟练地计算。
(2)掌握长方体的特征,认识它们展开图的形状,理解掌握长方体的表面积含义并能正确计算。
(3)结合具体情境,掌握分数乘法的计算法则,并能正确熟练地计算。
(4)理解倒数的意义,掌握分数除法的计算法则,并能熟练地计算。
(5)掌握分数乘法、除法的数量关系,并能运用这些知识和技能解决简单的数学问题。
(6)使学生在具体的情境中认识列、行的含义,知道确定列、行的规则。能初步理解数对的含义,会用数对表示具体情境中物体的位置。结合具体情境,使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高思维能力,发展空间观念。
(7)找题中的等量关系,并根据等量关系列出方程。能比较熟练地解方程,进一步提高学生分析数量关系的能力。
(8)使学生会看起始格与其他格代表的单位量不一致的条形统计图,并能根据统计图回答简单的问题。
教学重、难点
教学重点:
1.理解整数与分数乘法的意义,理解分数乘分数的意义及其计算方法。
2.理解除数是分数的除法的'意义,分数除法的计算方法。
3.重点培养分析问题、解决问题的能力。
4. 找题中的等量关系,并根据等量关系列出方程。
5.了解长方体的几何结构。掌握长方体表面积的计算方法。
教学难点:
1.整数与分数的乘法的两种意义之间的联系。
2.把被除数的分数平均分成几份,其中的每一份都是这个被除数的几分之一,也是所求的商。要结合具体情境与操作来理解分数除以整数的意义。
3.除数是分数的除法的意义,是从被除数中能够分出多少个除数的角度来理解的感受1立方米、1立方厘米以及1升、1毫升的实际意义,能形象地描述这些体积单位实际有多大。
课程内容与安排
本册教材共分八个单元、四个领域:
本册教材的教学内容有(按单元):分数加减法、长方体(一)分数乘法、长方体(二)、分数除法、确定位置、用方程解决问题、数据的表示和分析、总复习。
(一)数与代数(按领域划分)
1.第一单元“分数加减法”。 结合具体情境,理解分数加减法的算理,掌握它们的计算法则,并能正确熟练地计算。
2.第三单元“分数乘法”学生将在这个单元的学习中,结合具体情境,在操作活动中,探索并理解分数乘法的意义;探索并掌握分数乘法的计算方法,并能正确计算;能解决简单的分数乘法的实际问题,体会数学与生活的密切联系。
3.第五单元“分数除法”。学生将在这个单元的学习中,结合具体情境,借助操作活动,探索并理解分数除法的意义;借助图形语言,探索分数除法的计算方法,并能正确计算;了解倒数的含义,能求一个数的倒数;能应用方程解决有关的分数除法的实际问题,体会数学与生活的密切联系。
(二)空间与图形
1.第二单元“长方体(一)”。学生将在这个单元的学习中,通过观察、操作等,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;结合具体情境,探索并掌握长方体、正方体表面积的计算方法,并能解决生活中一些简单的问题;经历展开与折叠、寻找规律等活动,发展空间观念和探索规律的能力。
2.第四单元“长方体(二)”。学生将在这个单元的学习中,通过操作活动,了解体积(包括容积)的含义;认识体积(包括容积)单位(米、分米、厘米、升、毫升),会进行单位之间的换算,感受1米、1分米、1厘米以及1升、1毫升的实际意义;探索并掌握长方体、正方体体积的计算方法,并能解决简单的实际问题;探索某些不规则物体体积的测量方法;在观察、操作等活动中,发展动手操作能力和空间观念。
3.第六单元“确定位置”。使学生在具体的情境中认识列、行的含义,知道确定列、行的规则。能初步理解数对的含义,会用数对表示具体情境中物体的位置。结合具体情境,使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高思维能力,发展空间观念。
4.第八单元“数据的分析和分析”。使学生会看起始格与其他格代表的单位量不一致的条形统计图,并能根据统计图回答简单的问题。
(三)统计
第八单元“数据的表示和分析”。学生将在这个单元的学习中,经历收集数据、整理数据、分析数据的过程,体会统计的作用,发展统计观念;通过实例,认识扇形统计图,了解扇形统计图的特点与作用;能根据需要,选择条形统计图、折线统计图、扇形统计图直观、有效地表示数据;通过实例,理解中位数、众数的意义,会求一组数据的中位数、众数,并解释结果的实际意义;根据具体问题,能选择适当的统计量表示一组数据的不同特征;能从报刊杂志等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表。
(四)综合应用
本册教材安排了两个大的专题性的综合应用,即“数学与生活”、“数学与购物”,旨在综合运用所学的知识解决某一生活领域的实际问题。同时,还在其他具体内容的学习中,安排了某些综合运用知识解决简单的实际问题的活动。学生在从事这些活动中,将综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;感受数学知识间的相互联系,体会数学的作用;在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。
(五)整理与复习
教材安排了两个整理与复习。整理与复习改变单纯做题的模式,注重发展学生自我反思的意识。每个整理与复习都分成三部分:对所学内容的整理,提出数学问题并尝试解答和一些练习题目。
“你学到了什么”这个栏目,目的是鼓励学生对学过的知识进行回顾与反思,能运用列表或采用其他的形式对所学的主要内容进行简单的梳理。“运用所学的知识提出相关的数学问题,并尝试解决问题”,目的是培养学生提出问题、解决问题的能力;在解决问题过程中加深对所学知识的理解;回顾在学习过程中自己的体会与进步。
全册教学内容及教时安排(以单元为单位)
(1)分数加减法8课时
(2)长方体(一)8课时
(3)分数乘法9课时
(4)长方体(二)10课时
(5)分数除法8课时
(6)确定位置 2课时
(7)用方程解决问题4课时
(8)数学好玩3课时
(9)数据的表示和分析6课时
(10)总复习6课时
新五年级数学下册教案 2
教学目标:
在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。根据具体的问题,能选择适当的统计量表示数据的不同特征。感受统计在生活中的应用,增强统计意识,发展统计观念。
教学过程:
一、初步感受,复习平均数的计算方法。
1、 问题:草地上有六个人在玩游戏,他们的平均数是10岁,请你想象一下是怎样年龄的五个人在玩游戏?
2、 学生交流后,教师出示图片:这些人年龄分别为1岁、3岁、3岁、3岁,40岁。学生交流巩固平均数的计算方法。
3、 交流:用平均数10岁描述这些人的平均年龄合适吗?为什么?
使学生初步体会到平均数有时会受极端数据的影响。
二、创设情境,学习新知。
1、与学生一起欣赏图片组:小淘应聘记。
A、应聘广告:月平均工资1000元。B、勤奋工作,满怀喜悦去领工资。C、思考:怎么这么少?才600元。D、找财务部门理论。E、出示公司工作人员月工资一览表。
经理 副经理 员工 员工 员工 员工 员工 员工 员工 员工 员工
3000 2000 900 800 750 650 600 600 600 600 500
2、学生观察表格,交流自己的感受。
思考: 1000元时这组数据的平均数,为什么大部分人的工资不到1000元呢?用1000元反映公司员工的月收入合适吗?
使学生再次体会平均数受极端数据的影响时就不能很好的代表数据的集中趋势。
3、学生先独立思考,然后小组交流。
思考:你认为用怎样的数反映公司员工的月工资比较合适?
A、学生交流自己的看法。
B、教师在肯定学生意见的基础上向学生介绍:除了平均数以外,数学上还有两个统计量可以表示一组数据的平均水平,那就是“中位数”和“众数”。
C、理解“中位数”及“众数”的概念。学生先按照自己的理解说一说,然后师生共同小结。
中位数:将一组数据按顺序排列,中间的数就是这组数的中位数。
众数:一组数据中出现次数最多的数就是这组数的众数。
D、学生找出员工收入的中位数及众数,与平均数比较,感受中位数与众数的特点。
教师小结:数据650处于中间,反映的是中等水平的工资,能表示这组数据的中等水平。600元出现次数最多,体现的是多数人的工资水平。
4、学生交流得到一组数据的中位数及众数方法,并说一说自己还存在哪些疑惑。
三、解除疑惑-----对中位数和众数的再认识。
师生共同完成三组练习。学生说一说自己对中位数、众数又有了哪些新的认识?
师生小结:当一组数据的个数是偶数时,中位数取中间两个数的平均数;一组数据的众数不唯一,也可以没有。一组数据的.中位数、众数、平均数可能是同一个数。
四、解决问题-----能根据具体问题选择适当的统计量。
1、学生谈一谈课前草地上几个人年龄的平均水平用哪个数反映比较合适。使学生认识到:用众数比用平均数要合适一些,3不仅是这组数的中位数,也是它们的众数。
2、课本练习:一组学生1分钟跳绳次数如下:234 133 128 92 113 116 182 125 92。
(1)分别计算这组数据的平均数和中位数。
(2)你认为平均数、中位数哪一个能更好的表示这组同学的跳绳水平? 学生根据数据特点交流自己的看法。通过观察与交流,使其意识到:这组数据中出现了234这样的极端数据,用平均数就不太合适,所以可以用中位数代表这组数据的总体水平。
五、小调查。
在一些比赛中,计算选手的最后得分时,往往先去掉一个最高分和一个最低分,再计算剩下得分的平均数,把它作为该选手的最后得分。你知道这是为什么吗?
学生进行简单的交流后,教师鼓励学生课后开展调查活动,便于再次的交流讨论,也使其体会到中位数、平均数在生中的应用。
新五年级数学下册教案 3
教学目标
1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
重点难点
质数、合数的意义。
教学过程:
复习导入
1、什么叫因数?
2、自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的`因数个数来分,今天这节课我们就来学习这种分类方法。
新课讲授
1、学习质数、合数的概念。
(1)写出1~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17、22、29、35、37、87、93、96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:1、7、29、37
合数:22、35、87、93、96
3、出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
新五年级数学下册教案 4
教学目标:
1,使学生感受数学与现实生活的密切联系,初步学会列方程解决一些稍复杂的生活问题.
2,学会找出生活问题中相等的数量关系,正确列出方程.
3,培养学生根据具体情况,灵活选择算法的意识与能力.
4,培养学生的合作交流意识,让学生在学习过程中获得成功体验,培养学生积极的数学情感.
教学重点:
用方程解"已知比一个数的几倍多(少)几是多少,求这个数"的问题.
教学难点:
分析问题中的等量关系,并会列出方程解答.
教学准备:
多媒体课件.
教学过程:
一,知识回顾:
1,解下列方程.
X+2x=147y-34=71
2,根据下面叙述说说相等关系,并写出方程.
①公鸡x只,母鸡30只,是公鸡只数的2倍.
②公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只.
3,(媒体出示教材情景图)讲述:一天,学校的足球场上,善于观察的小军,勤于研究的小华和爱提问题的小刚三人休息时,突然发现足球的秘密.小军发现……小华发现……小刚提出……
(足球上黑色的皮都是五边形,白色的皮都是六边形的黑色皮共有12块,白色皮比黑色皮的2倍少4块,共有多少块白色皮)
让学生独立做,集体订正时,(板书线段图).
二,合作探究:
1,教学例1(媒体出示教材情景图).
"足球上黑色的皮都是五边形,白色的皮都是六边形的白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮"
(1)审题,寻找解决问题的有用信息.
提问:"例题与复习题有什么相同的地方""有什么不同的地方"
教师说明:例1就是我们以前见过的`"已知比一个数的几倍少几是多少,求这个数"的问题.今天我们学习用方程解答这类问题.
教师板书:稍复杂的方程
(2)分析,找出数量之间的相等关系(教师板书线段图讲解)
看图思考:白色皮和黑色皮有什么关系
学生小组讨论,汇报结果.
可能出现的等量关系是:黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2-白色皮的块数=4
黑色皮的块数×2=白色皮的块数+4
(3)同桌讨论怎样列出方程.
(4)交流汇报并让学生根据题意说出所列方程所表示的等量关系.允许学生列出不同的方程.
板书学生的方程并选择2x-4=20讨论它的解法.
学生小组讨论解法.
汇报交流板书:
解:设共有x块黑色皮.
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
检验:(引导先生口头检验)
答:共有12块黑色皮
(5)学生选择其余的方程解答.
2,变式练习.
(1)教师:如果把例1中的第二个条件改成"白色皮比黑色皮的2倍多4块"该怎样列方程(课件演示把白色皮比黑色皮的2倍少4块中的"少"换成"多")让学生列出方程解答.
(2)把它和例1加以比较,使学生清楚地看到,这种用算术方法解需要"逆思考"的应用题,不论是"几倍多几"还是"几倍少几"列方程都比较容易.
3,引导学生总结列方程解决问题的步骤:
①弄清题意,找出未知数,用x表示.
②分析,找出数量之间的相等关系,列方程.
③解方程.
④检验,写出答案.
三,巩固应用
1,只列式不计算.(课件出示)
①图书室有文艺书180本,比科技书的2倍多20本,科技书x本.
②养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只.
③学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只.
④一个等腰三角形的周长是86厘米,底是38厘米.它的腰是x厘米.
2,学生独立完成,集体汇报交流
①北京故宫的面积是72万平方米,比广场面积的2倍少16万平方米.广场的面积是多少万平方米
②世界上的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米.大洋州的面积是多少万平方千米
③猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km.大象最快能达到每小时多少km
④共有1428个网球,每5个装一筒,装完后还剩3个.一共装了多少筒
3,拓展提高.
①甲乙两数的和是90,甲数是乙数的2倍.甲乙两数各是多少
②甲乙两数的和是183,甲数比乙数的2倍还多3.甲乙两数各是多少
四,全课总结
今天这节课你学到了什么知识
板书设计:
先把2x看作一个整体
新五年级数学下册教案 5
一、教学目标:
1、初步体会到体积与重量的关系。
2、知道单位体积的重量,体积与物体重量之间的数量关系。
3、会计算形状是长方体或正方体的物体的重量。
二、教学重点、难点:
理解重量,体积与物体重量之间的数量关系。
三、教学过程:
(一)创设情境:
师:这是两块同样的木料,你估计哪块更重一些呢?
师:其实这里的大小也就是我们已经学习过的体积。这节课我们就来继续学习有关重量与体积的知识。
(二)探究新知
1、出示长方体木料。
(1)问:如何能知道1立方厘米这样木块的`重量吗?
(2)交流。
(3)出示测量数据。
2、1立方分米、1立方米这种木料重多少克?是多少千克?
生:独立解答,交流。
师:你从中获得了哪些启示呢?
3、小结:
①同样的物体体积越大重量越大。
②1 立方厘米、1立方分米、1立方米物体的重量统称为单位体积的重量。
4、练习
①1立方米这种木料重700千克,仓库里堆放了39立方米这种木料,这些木料重多少千克?
②1立方米这种木料重700千克,一辆卡车一共装了3.5t这种木料,这些木料的体积是多少立方米?
这两道题已知什么,要求什么?要能够熟练解答关键要知道单位体积的重 量,体积与物体重量三者之间的数量关系。
5、解决情境中的问题 只要比较两个木块的体积就能比较他们谁更重。给出数据:长方体长4分米、 宽3分米、高5分米,正方体棱长4分米。
生独立解答。
(三)巩固练习。
1、一块钢板长3.2 米,宽1.4 米,厚0.02 米,每立方分米钢重7.8 千克,这块钢板的重量是多少千克?
2、一块正方体花岗岩,棱长是2分米,如果这块花岗岩重20千克,那么每立方分米石料重多少千克?
(四)课堂总结:
这节课你有什么收获?有什么感想吗?
新五年级数学下册教案 6
教学目标:使同学了解"分数"发生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.
教学重点:使同学理解"分数"的意义,弄清分母,分子和分数单位的含义.
教学难点:使同学理解"分数"的意义,弄清分数单位的含义.
教学课型:新授课
教具准备:课件
教学过程:
一、创设情景,温故引新
1,提问:A,大家知道分数吗 谁能说一个分数
B,你能举个实例说说这个分数的意义吗
2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.
3,揭示课题:分数的意义
二、联系实际,探究新知
自主学习,整体感知分数的知识.
(1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.
(2)自学理解:① 关于分数,自学后我又知道了些什么
② 我还有什么不明白的地方呢
③ 关于分数我还想知道什么
2,探究深化,进一步理解分数的意义.
(1)用分数表示下面各图中的阴影局部.[课件1]
(2)填空.[课件2]
① 把一条线段平均分成5份,1份是它的( )/( );4份是它的`( )/( ).
② 把一块饼平均分成2份,每份是它的( )/( ).
③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )
(3)用一张长方形的纸,折出它的1/4,并涂上阴影.
用一张正方形的纸,折出它的3/8,并涂上阴影.
(4)抢答. [课件3]
① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢
④ 假如这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义
⑤ 假如把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义 假如是100;1000枝呢
(5)说说下列分数所表示的意义.[课件4]
5/7 3/8 3/( ) ( )/9 ( )/( )
3,小结.
我们可以把许多物体看作一个整体,比方:一堆苹果,一批玩具,一班同学,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我 把它叫做单位 "1".
板书: 一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.
三、加强练习,深化概念
竞赛:请两位同学站起来.
提问:A,这两位同学是这组人数的几分之几
B,这两位同学是两组人数的------- 这两位同学是全班人数的-------
四、家作
1,P88 .1,2
2,P89 .3
板书设计: 分数的意义
一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
新五年级数学下册教案 7
教学内容:
二期教材四年级第一学期课本P22—23
教材分析:
本节内容主要是对常用的面积单位进行一个梳理,一方面进一步借助学生的低阶面积单位的表象累积形成平方千米的表象,另一方面,使学生熟悉平方厘米、平方分米、平方米、平方千米之间的进率关系,能够进行简单的换算。
教学目标:
(一)知识与技能
1、初步学会根据实际需要,选用适当的面积单位,丰富面积单位的量感。
2、借助问题情景,合作探究平方米与平方千米之间的进率,进一步丰富1平方千米的量感。
(二)过程与方法
经历常用的面积单位的梳理过程,自主建构面积单位的换算方法,初步提高整理归纳能力。
(三)情感与态度
逐步体会数学与日常生活的密切联系,感知数学的价值。
重点难点:
1、丰富1平方千米的量感,掌握常用面积单位间的换算方法。
2、理解常用面积单位间进率的推算方法。
教学过程:
一、引入阶段
1、感受平方千米
同学们,你们觉得我们学校大吗?我们泗泾镇大吗?那么松江区呢?这些区域用我们新学的面积单位km2来表示,是多少呢?请看大屏幕:(出示)
我们美丽的校园占地面积约0.03平方千米。
我们家园——泗泾镇占地面积约24.2平方千米。
我们的松江区总面积约604平方千米。
你得到了什么信息?有什么感受?你觉得平方千米常用在什么样的区域?(对比,交流)
小结:平方千米常用来表示面积大的区域。
[从学生所处的生活环境展开,通过“区域大”但表示的“数字小”这一强烈对比,丰富平方千米的量感]
2、感知常用的小面积单位
我们还学过哪些常用的面积单位?谁能从大到小说出来呢?它们之间的进率是多少呢?让我们用手势来比划一下它们的大小吧!1km2能用手势来表示吗?(不能)为什么?(1km2太大)
板书
km2 1 m2=100dm2 1 dm2=100cm2 [通过记忆性口答与形象的手势感知,双重复习所学面积单位,再现常用面积单位的表象。]
3、感知练习
同学们对面积单位的量感不错,就让我们打开课本P23页,完成第三题,比比看,谁填的有快又准
在下面()中填入适当的.面积单位(课本23页)。
一张邮票的面积约9()
一张乒乓球台面约410()
一间教室的面积约63()
一张软盘的面积约1()
一个排球场占地约162()
上海野生动物园占地约2()
[在前面面积单位的充分感知铺垫下,通过填写适当的单位,促使学生将熟悉实物的某个面或某块区域与面积单位建立起联系,既诊断学生已学知识的掌握情况,又激活他们已有单位面积的量感。]
二、探究阶段
1、情景设疑:通过刚才的单位填写,同学们对面积单位的都很熟悉了,接着让我们来解决前面学习中留下的问题:(出示)如果1 m2可以挤下17人,那么1km2能不能挤得下整个上海的人?(上海总人口为16737700人)
要想解决这个问题,我们需要知道什么?同桌交流:需要知道1 km2等于多少m2,即km2与m2之间的进率,就可以求出1km2可以挤多少人,最终把问题解决。
2、合作探究:我们知道1 km2就是边长为1 km的正方形的面积,(出示边长为1 km的正方形图形)。
那么km2与m2之间的进率是多少呢?你们能从1 km2的定义来找出它们之间的进率吗?请小组合作完成。
(1)组内尝试解决,师巡视指导。
(2)全班交流解法:(板书)
1km × 1km = 1 km2
1000m× 1000m = 1000000
m2 1km2=1000000m2
(3)再次交流:通过在1km2定义的关系式中把km转换成m,我们很容易就找到了它们之间的关系。现在让我们同桌之间再把这个过程互相交流一下。
3、问题解决:知道了1km2=1000000m2,那么1 km2能不能挤得下整个上海的人呢?谁来说说看?指名交流。这个结果让你有什么想说的吗?
4、完善面积单位进率:现在我们已经把所学的面积单位之间的进率都找到了,请同学们把P22的面积单位的关系填写完整。(媒体演示课本23页单位面积的累积过程)
1 km2=()m2 1 m2=()dm2 1 dm2=()cm2
[通过问题设疑,激发学生的求知欲,让学生主动去探究km2和m2的进率。为了使学生形成清晰的量感,启发学生从定义去推理,把学生的思维引入深处,从而让学生在合作的尝试计算中直观获得1km2=1000000m2。其实学生以前在平方米,平方分米,平方厘米间的进率时已经经历了这样一个推理过程,在这里学生运用以往的经验解决今天所学的新问题,体现了知识的迁移。通过平方米和平方千米间关系的探究,对学生进一步理解单位面积的含义和进率的由来,促进学生表象记忆的形成都有好处,也激发了学生的求知X和解决问题的兴趣,为以下单位换算提供了一个良好的情知背景。]
三、运用阶段
1、分层练习:(说出思考过程)
(1)25 m2=()dm 23 km2=()m2
(2)3400 dm2=()m2 9000000 m2=()km2 580cm2=()dm2
(3)70000000 ㎡ —7k㎡=()k㎡
[学生在三年级时已经积累了一些重量、长度、面积单位换算的经验,并且会用小数表示单位之间的转换。这里先安排两组“从高到低”与“从低到高”的单位转换练习,就想让学生通过尝试找到换算的一般方法:高级单位化成低级单位时乘进率,低级单位聚成高级单位时除以进率。从而在思考方法上予以归纳提升,建构单位换算的基本策略。接着出示带有不同单位的计算题,提高学生的综合运用能力。同时借助学生思考过程的表达,便于检测学生对方法的理解,发展他们的演绎思维。]
2、拓展练习(同桌讨论)
判断下列各题是否正确,错的请改正。
(1)一个铅笔盒表面的宽度约5 c㎡
(2)教室的面积约30d㎡
(3)一个粉笔盒的表面约0.75 c㎡
(4)上海市的总面积约6341000000k ㎡
[在实际应用中,学生往往对长度单位和面积单位容易混淆,并且在选用面积单位时不善于实际问题的需要。通过判断纠错练习,一方面强化长度单位和面积单位的区别,另一方面想从“数”与“量”两个维度探索修改的方法(修正数据或计量单位),既巩固了单位面积的大小观念,又渗透小数点位置移动引起数的大小变化的思想,拓展了学生的思维。]
3、生活应用:(小组合作)
出示:为了扩大我国的绿化面积,人们要在长3km,宽2km的一块长方形的高原上植树,如果每平方米栽1棵树,运来60万棵树苗够吗?
解决这个问题我们要先算出什么?需要注意什么?写出你们的解题过程。交流探讨并板书解题过程。
[通过问题解决,再现本节课的重点新知“平方千米与平方米的转化”,同时让学生通过层层问题的分析,理清问题解决的思路,拓展思维,感受数学在生活问题解决中的应用价值。]
四、总结
这节课我们一起整理了“从平方厘米到平方千米”(板书)的面积单位,谁来谈谈这节课中你的收获?
新五年级数学下册教案 8
教学内容:
教材第75~76页内容及练习与应用第1—7题。
教学目标:
1、通过回顾与整理,使学生进一步加深对分数意义的理解
2、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题
3、进一步理解分数的基本性质,掌握约分和通分的方法。
4、通过小组交流的形式组织学生整理知识要点,体验自己学习的收获,建立合理的认知结构。
教学重点:
熟练解决求一个数是另一个数几分之几的实际问题
教学难点:
帮助学生建立合理的认知结构。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
1、这一单元你学会了什么?
学生交流。
2、小组讨论书上的三个问题。
指名汇报。约分和通分的`根据是什么?
约分要约到什么为止?什么是最简分数?通分一般用什么作公分母?
二、练习与应用
1、做第1题。
下面的涂色部分可用哪些分数表示?还能说出其他分数吗?说说你是怎样想的?
2、做第2、3题。
学生独立完成。校对,说说自己的想法。
3、做第4题。
可以用直线上同一个点表示的数,有什么特点?
你准备怎样找呢?学生完成约分,说说哪些分数相等?学生独立画点。
5、做第5题。
学生独立完成。指名汇报方法。
6、第6题
学生先独立练习
引导比较A三道题目计算方法有什么相同?
B算式中选择的除数有什么不同?
C从中还能想到些什么?
沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
7、第7题
练习后加强对比
引导学生区别清楚:一、第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二、第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。
三、课堂总结
通过今天的复习你有什么收获?
新五年级数学下册教案 9
教学目标:
1、通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2、感受到数学思想在日常生活中的广泛应用,尝试用数学的方法解决实际生活中的简单问题,培养学生应用数学的意识和解决问题的能力。
教学过程:
一、创设情境,导入新课
1、同学们生活中生活中是不是也曾买过次品呢?那么,在众多商品中如何找出次品呢?在小丽买的3中商品中都有次品,看来现在的商品质量还真成问题。这节课我们想办法帮小
丽“找次品”(板书课题)
2、画天平示意图,提问:这是什么?你知道天平的作用吗?怎样使用你知道吗?(为了讲课方便,教师用双手做天平使用演示)
3、有了它,我们就可以找出生活中的次品了
二、研讨新知
1、出示第一种商品:5瓶钙片,其中1瓶少了3片。怎样才能找出是哪一瓶?(生的回答可能有:用手掂一掂,打开后数一数个数,用天平称一称)
2、教师与学生讨论并否定前两种的不科学以及不卫生性,引导学生采用用天平称的方法。
(1)学生动手用学具摆一摆,老师随机指导
(2)小组内交流一下方法。
(3)全班汇报,在汇报中师生合作,演示同学们的测量方法。(演示中重点强调有几种可能,说明了什么)
(4)对几种方法的梳理,比较:分成几份?每份数量是多少?至少需要称几次就一定能找出来?
3、解决9个螺丝和12盒巧克力的'问题,从对比中总结出最优方法。
(1)分组解决
1、2小组解决9个螺丝中一个次品的问题。3、4小组解决12盒巧克力中一盒次品的问题。
(2)动手操作并填表
表一:
螺丝个数;分成的份数;保证能找出次品需要称的次数
表二:
巧克力盒数;分成的份数;保证能找出次品需要称的次数
(3)观察表一思考:这么多种方法中哪种方法所用称的次数最少?(平均分成3分称的方法)
(4)讨论:是不是在所有找次品的问题中,只有平均分成3分呈的次数最少呢?
(5)观察表二思考:12(6、6)需称3次 12(4、4、4)也需3次。如何解释这一问题呢?
(6)重新演示两种方法,并用较大的一个数来验证。比如84(42、42)和84(28、28、28)
(或者用更大的数,数越大越能体现出品均分成3份的方法的优越)
(7)小结:由此看来,利用天平找次品的时候,把待测物品分成3份称的方法最好。
(8)如果螺丝个数是10个,怎样分?怎样称呢?(引导学生体会不能不过平均分的要尽量平均分)
三、思维拓展
出事137页“你知道吗”让学生小组间研究一下,发现其中的规律。
四、课堂小结
新五年级数学下册教案 10
教学内容
教科书P34~35例2~4,完成教科书P35“做一做”和P36“练习八”中第1题。
教学目标
1.掌握相邻两个体积单位间的进率,会利用体积单位间的进率进行简单的换算。
2.经历相邻体积单位换算的推导过程,培养学生的探究能力和迁移类推能力。
3.在正确应用体积单位间的进率进行名数的换算,解决简单实际问题的过程中,体会数学的应用价值。
教学重点
体积单位间名数的换算。
教学难点
低级名数换算成高级名数时小数点的位置移动。
教学准备
课件。
教学过程
一、复习旧知识,引入新课
师:同学们还记得我们已经学过哪些常用的长度单位吗?你知道相邻两个长度单位间的进率是多少吗?
师:我们还学过哪些常用的面积单位呢?相邻两个面积单位间的进率是多少呢?
师:常用的体积单位有哪些呢?
师:猜想一下相邻两个体积单位间的进率可能是多少呢?这节课我们就一起来研究体积单位间的进率。[板书课题:体积单位间的进率(1)]
【学情预设】对于长度单位、面积单位,学生已经很熟悉,能熟练地回答,有些学生会联系相邻的长度单位、面积单位的进率分别是10、100,并进行猜想。
【设计意图】让学生在猜想、比较的过程中激发探究欲望,自觉调动已学过的知识经验,为后面的学习作铺垫。
二、直观演示,推算进率
1.探究发现,直观感知1dm3=1000cm3。
(1)课件出示教科书P34例2。
【学情预设】预设1:棱长1dm,1dm=10cm,所以沿着棱长切,可以切成10×10×10=1000个棱长为1cm、体积是1cm3的小正方体。
预设2:这个正方体的底面积是1dm2,就是100cm2,高是10cm,100×10=1000(cm3)。
(2)展示交流,完成进率推算。
结合学生的交流,课件呈现直观图形。
(3)归纳。
师生归纳:1dm3=1000cm3(板书)
【设计意图】有些学生对于理解这两种量之间的转化关系是有障碍的,可借助课件演示或反复实物操作帮助他们建立表象,逐步理解。
2.迁移推理,推算1m3等于多少立方分米。
(1)学生自主推算。
(2)学生交流,课件同步展示。
【学情预设】预设1:1m=10dm,10×10×10=1000(dm3)。
预设2:1m2=100dm2,底面积就是100dm2,100×10=1000(dm3)。
师生归纳:1m3=1000dm3(板书)
【设计意图】引导学生利用类推的思路自主推导,完成进率推算,建构体积单位间进率的模型。
3.整理计量单位。
师:到现在为止,我们已经学习了哪些计量单位?
学生交流后课件出示教科书P34下面表格。
(1)学生独立完成表格。
(2)学生交流,课件呈现完整的表格。
【设计意图】将长度单位、面积单位和体积单位及其相邻单位间的进率进行整理,促进知识的系统化。
三、理解应用,巩固提高
1.课件出示教科书P35例3(1)。
同桌之间讨论后交流。
【学情预设】1立方米等于1000立方分米,3.8×1000=3800,所以3.8m3=3800dm3。
师:因为1m3比1dm3大,所以将单位m3的量换成dm3,我们称之为高级单位换成低级单位。谁还能说说,将什么单位换成什么单位是高级单位换成低级单位呢?
【学情预设】m2换成dm2,dm2换成cm2,dm3换成cm3。
师:高级单位换成低级单位,怎么换?
师引导学生概括:高级单位的数换成低级单位的数乘进率,即高级单位的数低级单位的数。(师板书简洁表达方式)
2.课件出示教科书P35例3
同桌之间讨论后交流。
【学情预设】1立方分米等于1000立方厘米,2400÷1000=2.4,所以2400cm3=2.4dm3。
师:这里是由低级单位换成高级单位。低级单位换成高级单位怎么换呢?
师引导学生概括:低级单位的数换成高级单位的数,除以进率,即低级单位的数高级单位的数。(师板书简洁表达方式)
3.学生独立完成教科书P35“做一做”第1题。
学生独立完成后交流,引导学生说说怎么想的,怎么做的。
【学情预设】有较强数感的学生对于此类换算无障碍,但有些学生会把高级单位换成低级单位,低级单位换成高级单位这两种换算弄混淆。
师小结:高级单位的数换算成低级单位的数乘进率,低级单位的数换算成高级单位的数除以进率。
【设计意图】引导学生掌握体积单位换算的基本方法,鼓励他们灵活使用各种方法进行换算。
四、单位换算的实际应用
课件出示教科书P35例4。
(1)学生观察牛奶包装箱,找出计算体积所需的数据。
(2)学生自主解答。
(3)交流汇报。
板书:V=abh=50×30×40=60000(cm3)
(4)师:用立方厘米给牛奶箱的体积作单位合适吗?你觉得哪个单位更合适?为什么?
生交流,师板书:60000cm3=60dm3=0.06m3
【学情预设】当学生能意识到立方厘米作单位较小而牛奶箱较大不匹配时,自然能想到换算单位。有的学生觉得用dm3比较好,有的学生觉得用m3比较好。
【设计意图】引导学生根据实际情况进行体积单位换算,培养使用合适单位表示数量的习惯。
五、实际运用,巩固提升
1.完成教科书P35“做一做”第2题。
学生独立完成后展示交流。
【学情预设】预设1:学生没有统一单位,直接计算:15×24×3=1080(立方米)。让学生评价对错,分析错在哪里,及时进行更正。
预设2:各边长统一单位为“米”,再进行计算。
2.完成教科书P36“练习八”第1题。
【学情预设】有少数学生弄不清单位间的'进率或者将乘进率和除以进率弄混淆了,教师引导更正,并强化方法。
3.课件出示习题。
【学情预设】本道题中的边长,涉及3个长度单位,学生容易混淆,除了解答时要仔细,更要注意最后的单位是“立方分米”,允许学生用不同的方法解答。
六、课堂小结
师:通过这节课的学习,你对体积单位有了哪些新的认识?在进行各种计量单位的换算时,要注意些什么?
教学反思
前面学习了长度单位、面积单位之间的换算,本节课引导学生利用前面的知识猜想体积单位间的换算,并经历相邻体积单位换算的推导过程,旨在培养学生的探究能力和迁移能力,掌握高级单位与低级单位间的互换。教师通过例题的讲解与练习的巩固,组织学生多角度思考和交流,将前后所学的知识逐步归纳成体系,形成知识链,所以本节课的内容对于学生来说,并不难理解,关键是让学生掌握方法,避免混淆。
第2课时
教学内容
教科书P36~37“练习八”中相关习题。
教学目标
1.进一步熟悉体积单位之间的进率,能熟练地进行简单体积单位之间名数的换算。
2.会正确地用体积单位间的进率进行名数的换算,并解决一些简单的实际问题。
3.培养学生的观察、比较、分析等能力,养成良好的学习习惯。
教学重点
掌握名数的换算方法。
教学难点
灵活运用名数换算解决简单的实际问题。
教学准备
课件。
教学过程
一、基础复习回顾
1.回顾体积单位间的进率。
师:我们学习了哪些体积单位?它们之间的进率是怎样的?[板书课题:体积单位间的进率(2)]
师归纳并板书:1立方分米=1000立方厘米1立方米=1000立方分米
2.课件出示问题,学生口答。
二、以题为例,感悟策略
1.课件出示教科书P36“练习八”第2题。
(1)学生自主读题,整理数学信息。
学生能从中读到数学信息,知道包装盒的长、宽和体积,知道玻璃器皿的长、宽、高,求这个长方体包装盒是否装得下玻璃器皿。
(2)学生自主解答。
(3)展示交流。
师:都解答出来了吗?谁能与大家分享一下你的解题方法?
【学情预设】预设1:直接算出玻璃器皿的体积,将体积单位换算为dm3,看它的体积是否比包装盒的体积11.76dm3小。25×16×18=7200(cm3)=7.2dm3,7.2dm3<11.76dm3,所以装得下。
预设2:因为玻璃器皿的长、宽、高的单位都是厘米,所以先将包装盒的体积单位换算成立方厘米,再算出玻璃器皿的体积,比较玻璃器皿和包装盒的体积大小。11.76dm3=11760cm3,25×16×18=7200(cm3),7200cm3<11760cm3,所以装得下。
预设3:从已知的信息知道包装盒的长和宽比玻璃器皿的长和宽都要长,就看包装盒的高是否比玻璃器皿的高长。11.76dm3=11760cm3,11760÷20÷28=21(cm),21cm>18cm,所以装得下。
2.对比练习,请同学们快速解答。
(1)课件出示问题。
学生快速解答后展示交流。
【学情预设】学生有的说装得下,有的说装不下。
(2)展示学生的解答方法。
师:装得下吗?为什么?
学生边说,课件同步呈现解答方法。
方法一:8.96dm3=8960cm3,25×15×18=6750(cm3),6750cm3<8960cm3,所以装得下。
方法二:25×15×18=6750(cm3),6750cm3=6.75dm3,6.75dm3<8.96dm3,所以装得下。
方法三:8.96dm3=8960cm3,8960÷(28×20)=16(cm),18cm>16cm,所以装不下。
(3)辨析质疑,深化理解。
师:同学们用不同的方法解答,得到了不同的结论,老师觉得都有道理,到底是装得下还是装不下呢?要说出理由才能让人信服。
【学情预设】学生通过交流意识到,是否装得下,仅仅看体积大小是不行的,只有包装盒的长、宽、高都大于玻璃器皿的长、宽、高才行,从而确定方法三才是对的,所以装不下。
(4)对比分析,优化方法。
师:回头再看看前面的第2题,我们用不同的方法解决了这个问题,你认为这类问题用哪种方法好?为什么?
【学情预设】教师引导学生理解,根据实际情况,方法一和方法二都不是很可靠,因为就算包装盒的体积大于玻璃器皿的体积,如果包装盒的高小于玻璃器皿的高,也是装不下的。
【设计意图】这两个问题都涉及体积单位的换算,巩固体积单位的进率,提升换算的能力。同时,设计两道对比练习,让学生体会解决问题的策略,积累解决问题的经验。
三、综合应用,灵活选择计量单位
课件出示教科书P37“练习八”第7题。
(1)学生自主解答,教师个别指导。
(2)集中展示交流。
师:水族箱占地面积是指什么?需要用多少平方米的玻璃又是求什么?体积呢?
【学情预设】大多数学生都知道:水族箱占地面积是指水族箱的底面积,需要用多少平方米的玻璃就是求水族箱的表面积,只求5个面的面积和,体积就是水族箱的长、宽、高之积。
【设计意图】这道题涉及长方体的底面积、表面积和体积,而且表面积要根据实际确定,综合性比较强,能有效感受长方体测量的相关知识的区别与联系,进一步巩固和理解面积单位和体积单位,能正确运用与换算。
四、实际应用,拓展提升
课件出示教科书P37“练习八”第9题。
(1)小组合作探究。
(2)展示交流。
【学情预设】学生可能会列式计算:30×30×30÷(20×20×10)=6.75(盒),得到最多能装6盒。教师要引导学生思考,6盒是不是一定装得下?怎么样装才能装得下?
(3)课件呈现完整答案。
【设计意图】这是一道实际问题,对于学生来说,有一定的难度。在解答过程中,注重引导学生讨论方法,让学生感受到仅仅列式是不够的,要具体问题具体分析。同时,在研究怎样装的过程中,培养学生的几何直观能力。
五、自主练习
1.学生独立完成教科书P36~37“练习八”第4、5、6、8题。
2.集中交流,评价反馈。
六、课堂小结
师:同学们,通过本节练习课,你有哪些新的收获呢?
【学情预设】学生可能会说,要具体问题具体分析,区分清楚面积单位和体积单位,选择合适的单位等等。
师板书:结合具体问题具体分析。
板书设计
1立方分米=1000立方厘米1立方米=1000立方分米
结合具体问题具体分析。
教学反思
通过本节课的练习,发现同学们对面积单位、体积单位的换算都掌握得比较好。但在具体问题具体分析这块,还有待加强。特别是第9题,对学生有一定的挑战,教学时可引导学生先讨论解决这类问题的方法,引导学生思考,建立如何摆放的表象。针对有困难的学生,可用课件帮助学生理解,从而突破难点。由于没有教具让学生实际动手操作,学生理解起来还是有难度,要加强学生几何直观的培养。
新五年级数学下册教案 11
【教学目标】
1.知识与技能:经历从生活情境到方程模型的建构过程,会用方程表示简单情境中的数量关系。
2.过程与方法:提高独立思考、合作交流的能力。
3.情感与态度:在列方程的过程中,发展抽象概括能力。
【教学重点】
掌握方程的解的意义,用方程表示简单情境中的数量关系。
【教学难点】
用方程表示简单情境中的数量关系。
【教具准备】
多媒体课件。
【教学过程】
一、复习铺垫
下面哪些是等式?哪些是方程?
5y36÷x=97?8+9m10-x=3?54+x>95×7=356y+6=482x+3x=20
二、走进新课
1.教学例2
课件出示例2。
(1)介绍唐卡的背景知识。
课件出示:
你知道吗?唐卡即卷轴画,是西藏地方绘画艺术的主要形式之一。这种画通常绘在丝绢或布帛上,因多描绘宗教内容,加上易于携带,所以在藏区广为流行。唐卡表现题材广泛,除宗教内容外,还包括大量的历史和民俗内容。所以唐卡又被称做是了解西藏的"百科全书"。西藏唐卡是用彩缎装裱的一种卷轴画,具有鲜明的民族特点、浓郁的宗教色彩和独特的艺术风格,历来被人们视为珍宝。人们现今看到的唐卡,也称之为布画。它一方面发扬更新原有艺术特色,一方面吸取汉地或印度、尼泊尔等地之艺术精华,久而久之,成为独具一格的'艺术流派。
(2)构建方程。
师:你知道一张唐卡值多少钱吗?(出示介绍唐卡的数学信息)单价是"2.6万元",如果有x张,你可以表示出什么?
师:"2.6x"表示总价,"130万元"表示什么呢?
师:你能列出一个方程吗?
(根据学生的回答板书:2.6x=130)
师:这个方程的左边表示什么?右边表示什么?是根据什么等量关系列出的方程?
2.试一试
(1)学生独立尝试列出方程。
(2)汇报交流,先说出等量关系,再说出方程。
3.课堂活动
(1)讲明要求。
(2)独立尝试。
(3)小组交流。
(4)汇报评价。
三、巩固应用
1.判断
(1)含有未知数的式子叫做方程。()
(2)等式都是方程。()
(3)小军看了35页书,比小华多看5页,小华看了x页。列方程为x-5=35。()
2.看图列方程
3.自选练习
如果你很轻松就完成了A组题,那就试一试B组吧!
A组:7路车上原来有x名乘客,到了实验小学站,下去了9名,又上来了3名,车上现在一共有38名乘客。你能写出方程吗?
B组:小明有60张画卡,小红有30张,小明送一些给小红后,发现两人的画卡一样多了。
你认为发生了什么事情?你能写出一个方程吗?
四、总结评价
今天你有什么收获?还有什么问题吗?你今天表现怎样?
新五年级数学下册教案 12
一、教学内容
教材第53-54页。
二、教学目标
知识与技能
(1)初步理解方程的意义,会判断一个式子是否是方程。
(2)会按要求用方程表示出数量关系。
过程与方法
(1)经历方程的认识过程,体验观察、比较的学习方法。
情感态度与价值观
(1)在学习活动中,激发学生的学习兴趣,培养学生动手动脑的能力,促进学生公平公正人格的形成,养成仔细认真的良好学习习惯。
三、重点与难点
重点:理解定义,会根据定义判断是不是方程。
难点; 会根据方程的意义找出等量关系,列出方程。
突破方法:在实践生活中理解方程的意义。
四、教法与学法
教法:直观演示,启发引导学生进行理解思考。
学法:独立思考与小组交流相结合。
五、教学准备
教学PPT
六、教学过程
1、回顾复习:
①小故事:找学生给大家讲一讲曹冲称象的故事,学生会说大象的重量就等于石头的重量,用课件展现学生刚才所讲的故事,让学生集体说出等量关系“大象的重量=石头的重量”
②等式
每组中的两个式子,如果是结果相同的( )就画“√”,不同的画“×”。
a×2和a? ( × )
x+x和2x ( √ )
72×2和72+2 ( × )
2.在下面各题( )的.里,填入“<”、“>”或“=”
1.8+5.2(=)7 3×6(> )19
20+20(>)35 37-17(= )20
a+b(=)b+a 80÷20(<)5
(再观察画有横线的算式左右两边的特征)
学生会说出划横线的都是等号左右两边相等,是等式。
教师带领学生回顾等式的概念,课件放映出
定义:数学中用等号来表示相等关系的式子叫做等式。
教师提问学生对等与衡的理解
学生会说相同;一样:相等、等价 。
2、探究新知
教师:大家说说生活种常见的一些称量工具
学生:杆秤、电子秤、天平。
教师着重介绍天平。
①用课件投影展示,天平秤量有一个空水杯,当天平两边保持平衡时,天平右边托盘中的砝码为100克。让学生回答说出杯子有多重?
学生会说出:杯子的重量=100克
②给杯子中加入水,用课件投影呈现天平倾斜的过程,让学生观察并说出那边的重量中一些,学生会说出现在水的重量大于100克。引导学生列出100+加入的水(x)>100.
③教师提问当天平的左边比右边重的时候,不改变左边,要怎样使天平再次保持平衡?
学生回答:对天平右边加砝码。
教师:加多重的砝码呢?
学生:加到天平再次平衡的重量就可以
课件投影出示加砝码的过程,加100克重的砝码的时候,发现天平依然左边重,并引导学生列式100+x>200;学生会说还要再加砝码,再加100克,列式得到100+x<300;学生会建议加个150克重的砝码,用多媒体呈现此时天平的状态。天平左右两顿平衡。重量相等。
④得到此时天平上的等量关系:100+x=250
⑤让学生观察上式和我们之前学过的等式有什么不一样的地方?
学生会说出,在等式的基础上出现了用字母表示的数。教师在此基础上引出方程的定义:含有未知数的等式叫方程。
教师强调定义中的关键字,未知数、等式。
⑥这三组式子中哪个是方程?什么是方程?怎样判断一个式子是不是方程?
(1)100+200=100+200(2)100+x>200;
(3)100+x=250
学生回答第三个是方程,判断方法,根据定义判断。
⑥思考:方程与等式之间存在怎样的关系?方程是否一定是等式?等式是否一定是方程?
教师组织学生分组交流。各小组汇报交流结果,教师总结:
方程一定是等式,等式不一定都是方程。教师提示学生举反例
学生:
6+x=14(是等式是方程) 50÷2=25(是等式但不是方程)
3、知识应用
课件放映图片,学生根据天平上标注的数字列出方程
(1)x+x =500 或 500=2x
(2)小涛:我能拍球25个小梅:我能拍球y个两个人共拍球70个(情境中的数量关系是什么?)
25+Y=703)12+x =20或20-12=x或20-x=12
(4)看图列方程一条长166的线段被分成两部分,一部分为73,一部分为x,存在的数量关系 166-73=x学生说出其他的列式。
4、小结,让学生交流我们本节课所学的知识,让学生说一说通过本节课的学习学到了什么。
七、课时作业
练习十一:第二题第三题
新五年级数学下册教案 13
教学目标:
1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。
2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。
3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。
4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。
教学重点:
初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。
教学难点:
通过探索,自主推算出相邻体积单位间的进率。
教学准备:
多媒体课件、体积单位模型、彩泥、魔方等。
教学过程:
一、创设情境,引发思考
师:上一节课,我们认识了体积,什么是物体的体积?
问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)
师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。
二、合作学习,探究新知
(一)探寻学生已有知识:
问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)
(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)
【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】
(二)建立1cm3、1dm3、1m3的空间观念
1、建立1立方厘米的空间观念:
(1)初步感知1cm3有多大:
问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)
【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的.表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】
<<<123>>>
(2)触类旁通,定义1 cm3的大小:
师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)
【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】
(3)进一步感知1cm3的大小:
做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。
(4)想一想,填一填:
师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)
2、建立1立方分米、1立方米的空间观念:
(1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)
【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】
(2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)
【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】
(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。
【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】
3、练习(用合适的体积单位表示下面物体):
一块橡皮的体积约是8( )。
一台录音机的体积约是10( )。
运货集装箱的体积约是40( )。
一本新华字典的体积约是0.4( )。
一个西瓜的体积约是5( )。
一间教室的体积约是180( )。
(三)继续类比,探究相邻体积单位间的进率:
1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)
2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)
【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】
3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)
【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】
4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)
5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)
【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】
三、动手操作,质疑反思:(机动,也可作为课后拓展)
学生活动:用一些棱长为1厘米的小正方体,做下面的活动。
1、用4个小正方体可以摆成一个大正方体吗?
2、最少要用多少个小正方体才可以摆成一个大正方体?
3、你能再摆一个大一些的正方体吗?用了多少个小正方体?
【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】
四、总结全课,感悟学习方法:
师:通过今天的学习,你有哪些新的收获?(生生互动)
小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。
新五年级数学下册教案 14
教学目标
1 .使学生理解真分数和假分数的意义及特征,并能辨别真分数和假分数。
2 .培养学生观察、比较、概括的能力。
3 .培养学生数形结合的数学思想。
重点 理解真分数和假分数的意义及特征。
难点 理解真分数和假分数的意义
教具 主题图。
教法 引导探究
教学设计流程
(一)导入
1 .复习:什么叫分数?
2 .用分数表示出下面各图的涂色部分。(出示教具)
请学生分别说出每个分数的意义。
(二)教学实施
1 .提问:比较上面三个分数的分子与分母的大小?这些分数比1 大还是比1 小?并说明理由。
2 .学生观察后,试着回答。
学生:(第一个圆)平均分成了3 份,这样的3 份也就是一个整圆,表示1 ,而阴影部分只有1 份,所以比l 小。
再请学生分别说出另外两个分数。
3 .老师指出:像上面的3 个分数都是真分数。我们过去接触过的分数,大都是真分数。那么,你能说说什么叫真分数吗?
4 .让学生独立思考后,与同桌交流一下,再指名回答。
5 .小结:分子比分母小的分数叫做真分数。真分数小于1 。
(四)思维训练
(五)课堂小结真分数的分子比分母小,真分数小于1 ;假分数的分子比分母大或分子和分数相等,假分数大于或等于1 。
板书设计: 真分数和假分数
分子比分母小的分数叫做真分数。真分数小于1 。
假分数的分子比分母大或分子和分数相等,假分数大于或等于1 。
教学后记:在教学目标中,过程与方法目标完成的效果不够好,在“做一做”第2题中,分数用直线上的点不能准确地表示出来,尤其是假分数,齐梦蝶同学的错误率,主要原因是直线中把单位“1”平均分成了6段,在六分之几的分数中,一份是一段,在三分之几的`分数中,一份是两段,学生发生混淆。
弥补措施:找相关的内容进行练习。
重新设计需要改进的地方:
1、加强假分数大于1的教学。
2、注重平均分的总份数和分母对应,取的份数和分子对应。
新五年级数学下册教案 15
【教学内容】
教科书第44--45页的例3、例4和课堂活动第1题和第2题,练习十一的第1--4题。
【教学目标】
1.知识与技能:使学生明确1m3的概念,建立1m3的大小观念。
2.过程与方法:能区别使用1cm3,1dm3,1m3去度量物体的体积。
3.情感、态度与价值观:感受数学与生活的密切联系,激发学生的学习兴趣。
【教具准备】
米尺,棱长分别为1cm,1dm的正方体。
【教学重点】
各种体积单位的大小。
【教学难点】
用体积单位去度量物体的大小。
【教学过程】
一、复习引入
师(出示一根线、一张纸):一根线的长度用什么单位去度量?(长度单位)一张纸的大小用什么单位去度量?(面积单位)
师(拿出一盒粉笔):粉笔盒的体积大小又该用什么单位去度量呢?今天,我们就来认识体积单位。
二、教学例3
师:刚才同学们知道了1cm3,1dm3的大小,你能说说1m3的大小吗?
引导学生得出:棱长为1m的正方体的体积是1立方米,写作1m3。
师:你能用手比划一下1m3的大小吗?
做游戏:
3个学生用3块1m长的尺子在老师的帮助下在墙角围成一个正方体,这个正方体的`体积是1m3,然后让学生依次钻进去。呀!1m3能装10个学生。
将书包放在这个正方体模型里垒起来,能垒多少个书包?
师:我们已经认识了哪些体积单位?(1cm3,1dm3,1m3)
师:你能说说这三个体积单位谁是最大的?(1m3)谁是最小的?(1cm3)
三、教学例4
出示例4:1dm3等于多少立方厘米?
师:1dm3等于多少立方厘米?能用类似的方法推导出来吗?
1.将学生分组,用棱长是1dm的正方体推导。教师巡视指导,让每个学生在1dm2的纸上画出100个小格,然后贴在棱长为1dm的正方体纸盒(木块)的6个面上。
2.展示推导过程:一排有10个,一层有100个,10层就是1000个,所以1dm3里有1000个1cm3。
3.归纳总结:课件展示将一个棱长为1dm的正方体分割成1000个棱长为1cm的小正方体的过程,并板书:1dm3=1000cm3。
4.你能推导出1m3=()dm3吗?
学生可以分组讨论出结果,再抽生说一说推导的方法。
用刚才的方法推导出1m3=1000dm3。
5.总结相邻两个体积单位间的进率。
提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
1dm3=1000cm3
1m3=1000dm3
得出:相邻两个体积单位间的进率是1000。
四、构建长度、面积和体积单位的计量系统
出示表格,学生独立填写,并集体订正
相邻两个单位间的进率
长度单位mdmcm10
面积单位m2dm2cm2100
体积单位m3dm3cm31000
五、课堂活动
第1题是一个开放性的题,可以让学生在小组内先说一说,再全班汇报。
第2题学生可先独立完成,再集体订正。
六、课堂练习
第48页练习十一第1题。
可分组活动,先用1cm3的小正方体拼出一个和墨水瓶盒大小差不多的长方体,估算一个墨水瓶盒的体积。再将小正方体装在墨水盒里,比较一下估算的结果。
七、课堂作业
练习十一第2--4题。
八、全课小结
同学们,今天这一节课我们学习了什么?你有什么收获?
【新五年级数学下册教案】相关文章:
数学五年级下册教案(精选)10-21
数学五年级下册教案03-13
五年级数学下册教案01-09
[经典]小学数学五年级下册教案07-07
(精品)数学五年级下册教案06-11
(热门)数学五年级下册教案06-12
五年级啊数学下册教案02-28
数学五年级下册教案优秀04-22
五年级数学下册教案03-24
小学数学五年级下册教案(经典)07-08