小学数学六年级《比例的应用》教案(精选15篇)
作为一位不辞辛劳的人民教师,总归要编写教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编收集整理的小学数学六年级《比例的应用》教案,欢迎大家分享。

小学数学六年级《比例的应用》教案 1
教学内容:
用比例知识解答应用题。
教学目标:
1.通过复习,使学生进一步掌握用正、反比例关系解答应用题的数量关系和解题方法,提高解答此类题的能力。
2.培养学生的判断能力、灵活运用知识的能力。
3.培养学生认真审题、认真思考的良好学习习惯。
教学过程:
1.基础知识训练。
判断下面各题中的两种量成不成比例?成什么比例?(口答。)
(1)工作总量一定,工作效率和工作时间。
(2)速度一定,路程和时间。
(3)绳子的长度不变,剪下的米数和剩下的米数。
(4)单价一定,总价和数量。
(5)煤的总量一定,每天烧煤量和能够烧的天数。
(6)圆的半径和它的面积。
学生回答后,可让他们说说正、反比例关系的相同点及不同点,正、反比例的判断方法。
[订正:(1)成反比例(2)成正比例(3)不成比例(4)成正比例(5)成反比例(6)不成比例]
2.对比练习,加深理解。
教师谈话:我们已经学习了正、反比例的意义及正、反比例的应用题,这一节课要复习用比例的知识解答应用题。
(1)教师提问:用正、反比例知识解答应用题的步骤是什么?关键是什么?
先判断题中的数量关系成不成比例,成什么比例;再根据题中的比例关系,找到等量关系;然后把其中的未知数量用x表示,列出方程解答。关键是正确判断题中的数量关系成不成比例,成什么比例。
(2)基本练习,区分比较。
出示复习题。(全班同学动笔完成,指名板演。)
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条路共用几天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天修0.6千米。实际多少天修完?
[订正:
①解:设修完这条路共用x天。
答:修完这条路共用24天。
②解:设实际x天修完。
答:实际20天完成。]
订正时,可让学生说说解答正、反比例应用题的相同点和不同点是什么?
[相同点是解题步骤和解题关键相同;不同点是正比例应用题根据商一定列比例式,反比例应用题根据积一定列比例式,所列出的比例式的形式不同。]
(3)变式练习,加深理解。
出示复习题。
①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?
②修一条公路,计划每天修0.5千米,24天完成。实际每天多修0.1千米。实际多少天可以修完?
指导学生审题,并与前面的基本题进行比较,找出它们的相同点和不同点,然后让学生独立解答,指名板演。学生可能有如下的解法:
①解法一:
解:设修完这条路还要x天。
解法二:
解:设修完这条路一共用x天。
答:修完这条路一共用21天。
②解:设实际x天可以修完。
(0.5+0.1)x=0.5×24
0.6x=12
x=20
答:实际20天可以完成。
订正时,重点让学生说说这两题在列式时和前面基本题有什么不同,为什么?(强调列式时要注意对应关系。)
(4)多种解法,培养能力。
教师谈话:以上两题你们可以用其它方法解答吗?试一试。
学生独立解答,指名板演。
[订正:
①(12-1.5)÷(1.5÷3)=21(天)
或:12÷(1.5÷3)-3=21(天)
②24×0.5÷(0.5+0.1)=20(天)]
订正时,可先让学生说说解题思路,然后比较算术解法和用比例知识解答各自的'优点。在此基础上,教师小结:这些应用题用算术方法解,计算时比较方便,但是遇到稍复杂的题目,用比例知识列方程解答容易思考。今后解答这类题时,可以根据具体情况,灵活选用适当的方法解答。
3.巩固练习,灵活运用。
(1)用比例知识解答。(全班动笔完成。)
①某车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。实际每小时行了50千米。照这样计算,行完全程需要多少小时?
②100克蜂蜜里含有34.5克葡萄糖。照这样计算,2千克蜂蜜含有多少克葡萄糖?多少克蜂蜜里含有207克葡萄糖?
[订正:
①解:设行完全程用x小时。
50x=40×7.5
x=6
②解:设20xx克蜂蜜含有x克葡萄糖。
解:设x克蜂蜜里含有207克葡萄糖。
(2)选择合适的方法解答。(全班动笔完成。)
①学校买来塑料绳135米,先剪下9米做了5根跳绳。照这样计算,剩下的塑料绳还能做几根跳绳?
②生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。任务?
[订正:①(135-9)÷(9÷5)=70(根)
或:135÷(9÷5)-5=70(根)
订正时,可让学生说说解题思路,如用其它的方法,只要列式合理,计算正确,就算对。
(3)用多种方法解。(全班动笔完成。)
大齿轮与小齿轮的齿数比是4∶3,大齿轮有36个齿,小齿轮有多少个齿?
(4)思考题。(供学有余力的学生解答)
一间长4.8米,宽3.6米的房间,用边长0.15米的正方形瓷砖铺地面,需要768块。在长6米,宽4.8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0.2米的正方形瓷砖,要用多少块?
[提示:如果瓷砖的大小不变时,房间地面的面积与瓷砖的块数成正比例,所以只要求出两个房间地面的面积,就可以求出第二个房间需要多少块瓷砖。解法是:
解:设需用x块瓷砖。
如果都是在第一个房间铺,瓷砖的大小变了,总面积一定,瓷砖的块数与每块瓷砖的面积成反比例。(注意这里是与瓷砖的面积成反比例,而不是与瓷砖的边长成反比例。)解法是:
解:设要用x块瓷砖。
0.152×768=0.22×x
x=432]
4.布置作业。(略)
小学数学六年级《比例的应用》教案 2
教学内容:教材第53~54页练习十第4~13题,练习十后的思考题。
教学要求:使学生进一步掌握正、反比例关系的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断、分析和推理等思维能力。
教学重点:进一步掌握正、反比例关系的意义。
教学难点:正确应用比例知识解答基本的正、反比例应用题。
教学过程:
一、基本训练
1.揭示课题。
我们已经学习了正、反比例关系的意义和正、反比例应用题,根据成正、反比例量的关系,可以应用比例的知识解答相应的`应用题。这节课,我们练习正、反比例应用题。(板书课题)
2.基本训练。
小黑板出示练习十第4题,让学生口答并说明理由。结合第(1)题判断说明:在一个乘法表示的式子里(板书:ab=c),如果积一定,另两个量就成反比例;如果一个因数一定,根据乘、除法的关系,另两个量就成正比例。
二、基本题练习
1.做练习十第5题。
(1)学生读题。
提问:按过去的算术解法,第(1)题要先求什么数量,第(2)题要先求什么数量?用比例的知识怎样解答呢,请大家自己做一做。指名两人板演,其余学生做在练习本上。集体订正。
(2)提问:第(1)题是怎样想的?第(2)题是怎样想的,提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
2.练习小结。
解答正、反比例应用题,都要先判断两种相关联的量成什么比例,找出两种相关联量的对应数值,再列等式解答。解题时,正比例应用题要根据比值一定列等式解答;反比例应用题要根据乘积一定列等式解答。
三、综合练习
1.做练习十第11题。
让学生默读题目。提问:第一个圆柱的高是第二个圆柱高的 还可以怎样说?(第一个圆柱的高和第二个圆柱高的比是4 :5,或者第一个圆柱的高看做4份,第二个圆柱的高就是这样的5份)请大家思考两个问题,当两个圆柱底面积相等时,(1)圆柱体积与高成什么比例?(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?想一想,你能用几种方法解答,自己在练习本上列出式子.指名学生口答式子,老师板书(包括用分数应用题的方法解答)。让学生根据不同的式子,说说各是怎样想的。说明:按照分数与比之间的联系,有些应用题可以 根据数量之间的联系,用分数和比例知识,采用不同的方法解答。
2.做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?(老师板书)这样解答是怎样想的?(把树苗总棵数看做单位1,单位1的94%是470棵,所以列方程解)
(2)把树苗总数看做单位l,成活棵数是94%,你还能用比例知识解答吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说明列式理由。
四、讲解思考题
学生默读题目。提问:增加铅以后,铅与锡的比是5 :3,有怎样的关系式?根据这样的关系式可以怎样解答呢?请大家课后想一想、做一做。
五、课堂小结
通过练习,你进一步明确了哪些内容? 指出:过去我们学过的先求单一量和先求总数量的应用题,可以用比例知识来解答。解答正、反比例应用题,要先判断成什么比例,找出数量之间对应数值,然后根据比值相等或乘积相等的等量关系,列等式解答。解答应用题,还可以根据数量之间的联系,用不同的方法做。
六、布置作业
课堂作业:练习十第8、9、10题
家庭作业:练习十第6、7、12题。
小学数学六年级《比例的应用》教案 3
教学内容:教材第37页例5、试一试和练一练,练习七第4~日题。
教学要求:
1.使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。
2.使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。
教学重点:进一步认识比例尺。
教学难点:根据比例尺求图上距离或实际距离。
教学过程:
一、揭示课题
1.提问:什么是比例尺,
2.出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。
3.说明:利用比例尺,可以解决一些简单的实际问题,这节课就学习比例尺的应用。
二、教学新课
1.教学例5。
出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的倍数关系来解答,也可以按图上距离 :实际距离=比例尺列出比例,用解比例的方法就可以求出结果。
2.做练一练第1题。
指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的.,要注意什么问题?
3.教学试一试。
出示试一试,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按图上距离 :实际距离=比例尺列出比例,再解比例求出结果.
4.做练一练第2题。
指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。
5.做练习七第4题。
让学生做在练习本上,然后口答,老师板书。
6.做练习七第5题。
学生完成在练习本上。
三、课堂小结
这节课学习了什么内容?你学到了些什么?
四、布置作业
课堂作业:练习七第6、8题。
家庭作业:练习七第7题。
小学数学六年级《比例的应用》教案 4
教学内容:课本第63页例2;练一练;《作业本》第28页。
教学目标:进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。
教学重点:在连比中按比例分配应用题的特征与解答方法
教学难点:理解连比(三部分比)的意义与分数应用题的关系
教学关键:理解连比(三部分比)的意义
教学过程:
一、基本练习:
1、你可以想到什么?
(1)某班男、女生人数比是5∶4;
(2)柳树、杨树棵数比是1∶6;
(3)科技书和故事书比是5∶4。
2、练习:
(1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?
(2)改编1题中的.故事书80本为科技书有80本。
分析:每题有多种不同的解法,想想你能列出几种不同的解法?
二、新授
1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?
(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。
(2)学生尝试解答。
(3)反馈、讲评。
2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?
3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?
三、练一练。P64。
四、课堂小结。
这堂课与上堂课有什么不同吗?你学会了什么?
五、《作业本》第28页。
小学数学六年级《比例的应用》教案 5
教学内容:教科书第35页的第45题,练习九的第46题。
教学目的:使学生进一步掌捏用比例解答应用题的方法,提高解答应用题的能力。
教具准备:小黑板。
教学过程:
一、复习用比例解答应用题
教师:我们学习了比例的知识,有些应用题就可以用比例的知识来解答。现在我们就来复习一下。
1,用小黑板出示第35页第4题:
我国发射的科学实验人造地球卫星,在空中绕地球运行6周需行10.6小时,运行14周要用多少小时?
教师解释:运行一周就是绕地球一圈,人造卫星的速度是一定的。
提问:
这道题有几个相关联的量?它们成什么关系?为什么?(有两个相关联的量,因图为 =速度,而速度是一定的,所以转的周数同时间成正比例关系。)
指名说说这道题用比例的知识怎样解答。当学生说出后,教师板书出解答过程:
解:设运行14周要用X小时。
6:10.6=14:X
6x=10.614
X=
x 24、7
答:运行14周要用24.7小时。
2.用小黑板出示第35页第5题:
一个农业专业组乎整土地,原来打算每天平整0.4公顷,15天可以完成任务。结果12天完成了任务,平均每天平整多少公顷?
指名学生读题,并说出这道题的两个相关联的.量成什么比例,当学生说出每天平整的公顷数与时间成反比例后,让学生完成这道题。教师板书出解答过程。
3.总结。
教师:像上面这样的题在解答时,先要判断两个相关联的量成什么比例,然后列出含有未知数x的等式,再进行解答。
二、课堂练习
完成练习九的第46题。
1。第4题,先说明一下,农药是药液和水合起来的重量,再提示:第(1)小题。要求配制这种农药750.5千克,需要药液与水多少千克,要先算出农药和药液的比、农药和水的比。
2.第5题,让学生说一说根据什么来判断方砖的面积与方砖的块数成什么比例。
3.第6题,让学生独立完成,集体订正时,说说解答思路。
小学数学六年级《比例的应用》教案 6
教学内容:
教材第106、107页例1,例2。
教学要求:
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
教学重点:
认识正、反比例应用题的特点。
教学难点:
掌握用比例知识解答应用题的解题思路。
教学过程:
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?
(2)说明:这道题还可以用比例知识解答。
提问:题里再买几个同样的篮球说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次篮球个数与总价对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的.,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:效率时间=总量)这道题里哪个数量是不变的量?
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)
三、巩固练习
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业
完成练习十三第2~6题的解答。
小学数学六年级《比例的应用》教案 7
设计说明
1.注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的.密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
⊙创设情境,提出问题
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1.想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2.说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一 14÷4=3.5,3.5×10=35(本)。
方法二 10÷2=5,14÷2=7,5×7=35(本)。
方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1.提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2.学生尝试列式。
预设
方法一 4∶10=14∶x。
方法二 10∶4=x∶14。
方法三 14∶4=x∶10。
方法四 4∶14=10∶x。
3.交流汇报写出比例的主要依据。
4.学生独立解比例。
5.汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7.验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8.教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
小学数学六年级《比例的应用》教案 8
教学目标:
1、掌握用正比例的方法解答相关应用题;
2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;
3、培养学生分析问题、解决问题的能力;
4、发展学生综合运用知识解决简单实际问题的能力。
教学重点:《数据收集整理练习课》
掌握用正比例的方法解答应用题
教学难点:
能正确判断两种相关联的量成什么比例,正确列出比例式。
教学过程:
一、复习
出示课件
二、谈话导入
1、在上新课之前,先考考大家我们的`楼房有多么高?
2、怎样测量它大概的高度呢?
刚才同学们想出了很多的方法去测量大概高度。今天我们学习一种新的方法──正比例应用题,学完后,我们试着用这种方法去计算楼房的大概高度。看谁学得最棒。
三、新课教学
先来研究这样一个问题。
1、出示例1课件
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?
2、分析解答应用题
(1) 请一位同学读一读题目
(2) 这道题要求什么?已知什么条件?
(3) 能不能用以前学过的方法解答?
(4) 让学生自己解答,边订正边板书
14025
=705
=350(千米)
答:________________。
3、激励引新
这两种方法都合理,还可以有什么方法解答呢?
学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?
四、探讨新知
1、提出问题
师:请同学们结合课本上的例题,讨论以下问题。
(1) 题目中相关联的两种量是________和________。
(2) ________一定,_________和_________成_______比例关系。
(3) ______行驶的_____ 和 _____的 ________相等。
2、学生自学例题后小组讨论。
3、组间交流:小组代表把讨论结果在班内交流
4、学生尝试解答后评价(指名学生板演)
5、怎样检验?把检验过程写出来。
小学数学六年级《比例的应用》教案 9
教学内容
教科书第59页例2及练习十三4~6题。
教学目标
1.能运用反比例知识解决简单的实际问题,培养学生的数学应用意识和解决问题的能力。
2.经历探索反比例应用的学习过程,体会反比例知识与生活的联系。
3.使学生感受事物的普遍联系,受到辩证唯物主义观点的启蒙教育。
教学重点
根据反比例的意义解决有关反比例的实际问题。
教学难点
理解反比例应用题的解题思路。
教学准备
教师先准备好复习题和增加的练习题。
教学过程
一、激趣引入,复习铺垫
1.运一堆煤
车的载重量(t)
辆数(辆)
根据表格中的内容,你能写出多少个等量关系式?
2.判断
(1)当速度一定,路程和时间成什么比例?为什么?
(2)当时间一定,路程和速度成什么比例?为什么?
(3)当路程一定,速度和时间成什么比例?为什么?
教师:运用反比例和以前学过的知识,我们可以解决生活中的一些问题。
板书课题:反比例的应用
二、合作学习,探索方法
1?教学例2
引导学生理解题意,找出题中的两种量。
反馈:速度和时间是两种相关联的量。
教师:看到这两种量,你还联想到了哪种量?(路程)
教师:上题中路程是一定的量吗?
着重引导学生明白:"青年突击队"参加泥石流抢险,从出发到目的地的路程是一定的。
教师:路程一定,速度和时间成什么关系?为什么?
反馈:速度和时间是两种相关联的量,速度扩大或缩小几倍,时间反而缩小或扩大相同的倍数,它们的积(路程)一定,所以速度和时间成反比例。
2.解答例2
(1)接着出示例2后面的内容:"出发时接到紧急通知要求3时之内必须到达,他们每时至少需行多少千米?"
让学生说出,现在增加的这个条件和问题应该对应在表的哪个位置?突出让学生找准对应关系。
(2)合作学习:要求学生独立思考后,再试着用多种方法解答这个问题,然后在小组内交流。
交流要求:把思路和解答方法说给自己小组的成员听,把同组同学认为正确的解答方法,请组长板书在黑板上。如果有其他组长已经写在黑板上了,另一组长就不再板书同样的解决方法。如果你用的解答方法,同组的同学不能准确判断对错,或者引起了争议的解答方法,可以自己上来把它板书在黑板上。
学生活动,教师巡视指导。(把黑板分成3大块,供学生板书解答方法)
(3)集体交流,结合黑板上的板书,师生共同理解解法:
预设方法1:6×4÷3=8(km)
抽生说出,算式6×4表示什么意思?
预设方法2:解:设他们每时至少行x km。
3x=6×4
x=24÷3
x=8
教师:这样列式的根据是什么?
反馈:根据速度和时间成反比例,它们的路程相等,列出等量关系。
预设方法3:解:设他们每时至少行x km。
6∶x=3∶4或x∶6=4∶3
这种列式的方法有时会在学生中出现,应该由写这种解答方法的同学来说说他的想法。在这里主要还得根据课堂上学生出现的.各种解法来引导他们理解解题思路。
三、巩固应用,促进发展
1.基本练习
(1)将例2的最后一句话改编成2道应用题。
如果要想2时到达,他们平均每时需行多少千米?
如果每时行8 km,要几时才能到达目的地?
(2)练习十三第4题,先独立完成,再集体订正。
2.对比练习
(1)完成练习十三5题和6题。
教师引导提示:题中有哪两种相关联的量?哪种量是一定的?根据一定的量找出它们的等量关系,再解答。
(2)补充练习:修一条路,原计划每天修400 m,25天完成。实际前4天修 m,照这样的速度,修完要用多少天?(沟通区别与联系)
小组讨论后反馈:
①每天的米数--天数 ②总米数--天数
反比例知识解答:÷4×x=400×25
正比例知识解答:∶4=(400×25)∶x
提问:为什么一道题既能用正比例解答又能用反比例解答呢?
引导学生明白:因为题中既有速度(照这样的速度)一定,也有总米数(一条路长度)一定。
:在解答时,一定要认真审题,具体问题具体分析。
说一说生活中还有哪些问题可以用反比例来解答。
四、
今天这节课你有什么收获?说听听。
小学数学六年级《比例的应用》教案 10
当a、b表示两个量时,a÷b又叫做a与b的比,记作a∶b,读作“a比b”。其中a、b分别叫做比的前项和后项,它们的商叫做比值。比值是一个相对数。
两个量的比,分为同类量的比与不同类量的比。
一、同类量的比
同类量的比的比值,是一种抽象化的数值(无名数),它是将比的基数(后项)抽象为1而计算出来的。
例1圆周率
圆的周长∶圆的直径=圆周率。圆周率就是两个同类量的比值。我国南北朝时期著名的数学家祖冲之算出圆周率的值在3.1415926和3.1415927之间,并且得到了圆周率的两个分数形式的近似值:约率为,密率为。这一成就在世界上领先了1000年。
通过圆周率可以表明圆的内部结构与比例关系,从而深刻地提示了圆的本质特征。发现了圆周率,进而能推导出圆的周长和面积公式。
例2按比分配
一座水库按2∶3放养鲢鱼和鲤鱼,一共可以放养鱼苗25000尾。其中鲢鱼和鲤鱼的鱼苗各应放养多少尾?
这是一个按比分配的实际问题。2∶3这个比表明水库里所放养的鱼种结构与比例关系。
线段图:
解法1:2+3=5,
25000÷5=5000,
5000×2=10000,
5000×3=15000。
答:应放养鲢鱼10000尾,鲤鱼15000尾。
解法1:设水库放养的鲢鱼2x尾,鲤鱼3x尾。
2x+3x=25000,
5x=25000,
x=5000。
2x=10000,3x=15000。
答:(略)
解法2:2∶3=∶,且+=1,
25000×=10000,
25000×=15000。
答:(略)
例3比例尺
比例尺为1∶6000000的地图上,北京与天津的距离大约是4.5厘米,北京与天津的实际距离大约有多少千米?
图上距离与实际距离的比,叫做比例尺。
解:4.5×6000000=27000000(厘米)
=270(千米)
答:北京与天津的距离大约有270千米。
例4恩格尔系数
19世纪德国统计学家恩格尔根据统计资料,对消费结构的变化得出一个规律:一个家庭收入越少,家庭收入中(或总支出中)用来购买食物的支出所占的比例就越大,随着家庭收入的增加,家庭收入中(或总支出中)用来购买食物的支出则会下降。推而广之,一个国家越穷,每个国民的平均收入中(或平均支出中)用于购买食物的支出所占比例就越大,随着国家的富裕,这个比例呈下降趋势。
恩格尔系数是根据恩格尔定律得出的比例数,是表示生活水平高低的一个指标。其计算公式如下:
恩格尔系数=
除食物支出外,衣着、住房、日用必需品等的支出,也同样在不断增长的.家庭收入或总支出中,所占比重上升一段时期后,呈递减趋势。
恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降。改革开放以来,我国城镇和农村居民家庭恩格尔系数已由1978年的57.5%和67.7%分别下降到2005年的36.7%和45.5%。
国际上常常用恩格尔系数来衡量一个国家和地区人民生活水平的状况。根据联合国粮农组织提出的标准,恩格尔系数在59%以上为贫困,50-59%为温饱,40-50%为小康,30-40%为富裕,低于30%为最富裕。
恩格尔系数是用百分数表示特定的比值,所以百分数也叫百分比。
二、不同类量的比
不同类量的比的比值,也是一种相对数,但它是个名数。它是将相对数中的分子与分母的计量单位同时并列,以表明事物的强度、密度、普遍程度等。例如,人口密度用“人/平方公里”表示;每人平均粮食产量用“公斤/人”表示;每人平均国民生产总值用“元/人”表示;速度用“千米/时”表示;单价用“元/千克”表示等。
相对数不论是名数还是不名数,都有一个重要功能,即可以利用那些总量指标不能直接对比的现象,找到可比的基础,从而揭示事物之间的差别程度。
例5速度
马拉松选手2时约跑40千米,骑车者3时行45千米。两者谁的速度快?
比较速度有两种图式,一是比单位时间所走的路程,二是比单位路程所花的时间,于是有下面两种解法。
解法1:
40︰2=20︰1=20(千米/时),
45︰3=15︰1=15(千米/时)。
答:马拉松选手的速度比骑车者快。
解法2:
2︰40=1︰20=(时/千米),
3︰45=1︰15=(千米/时)。
答:(略)
一般地,路程与时间的比值,叫做速度。即
=速度。
路程一定时,时间花得越少,速度就越快;时间花得越多,速度就越慢。
例6GDP能耗
GDP即国内生产总值。国内标准煤消耗总量与国内生产总值的比值,叫做GDP能耗(吨/万元)。
我国到第十一个五年计划末每万元GDP能耗为2吨标准煤左右。那么每亿元GDP能耗大约为多少吨标准煤?
解:设每亿吨GDP能耗为x吨标准煤。
=2
x=20000(吨)=2(万吨)。
答:每亿元GDP能耗大约为2万吨标准煤。
例7空气的清新度
空气中含有带负电荷的肉眼看不见的微粒子,叫负离子。负离子也被称为“空气中的维生素”。空气中负离子的个数与空气的体积(cm3)的比值,叫做负离子浓度(个/cm3)。即=负离子浓度。
负离子浓度是比较空气清新程度的根据:
负离子浓度
等级
描述
>2000
一级
非常清新
1500-2000
二级
清新
1000-1500
三级
较清新
500-1000
四级
一般
≤500
五级
不清新
负离子发现与应用是人类在十九世纪的事,第一个国际学术会上证明负离子对人体有功效的是德国物理学家菲利浦莱昂纳博士,他认为地球自然环境对人类健康有益的负离子最多的地方是瀑布周围。
例8密度
叙拉古的亥厄洛王命令金匠制造一顶纯金的皇冠。,皇冠制好后,他怀疑里面掺有银子,便请阿基米德鉴定一下。
金、银这种组成物体的材料叫做物质,物体中含有物质的多少,叫做质量。
某种物质的质量和其体积的比值,即单位体积的某种物质的质量,叫做这种物质的密度(克/cm3或千克/m3)。
=密度。
密度是比较物质轻重的标准。金的密度是19.32克/cm3,银的密度是10.53克/cm3,金比银重得多。
为了鉴定皇冠里是否掺了银子,阿基米德要想办法检验皇冠的密度是否等于金的密度。解决这个问题需要测量出皇冠的体积,但如何测量形状不规则的皇冠体积呢?阿基米德一直解决不了这个难题。
有一天,阿基米德跨进浴盆洗澡时,看见水溢出盆外,于是从中受到启发:可以通过排出去的水的体积确定皇冠的体积。他测定的结果表明皇冠的密度比金的密度小,因此断定皇冠被掺进了银子。
小学数学六年级《比例的应用》教案 11
教学内容:教材第115页正、反比例的意义和正、反比例应用题、练一练,练习二十二第l、2题。
教学要求:
1.使学生更清楚地认识正比例和反比例关系的特征,能正确判断成正比例关系或反比例关系的量。
2.使学生进一步掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题。进一步培养学生分析、推理和判断等思维能力。
教学过程:
一、揭示课题
这节课,复习正、反比例关系和正、反比例应用题。(板书课题)通过复习,要进一步认识正、反比例的意义,掌握正、反比例应用题的数量关系、解题思路和解题方法,能更正确地判断成正、反比例关系的量,正确地解答正、反比例应用题。
二、复习正、反比例的'意义
1.复习正、反比例的意义。
提问:如果用x和y表示成比例关系的两种相关联的量,(板书:x、y是相关联的量)那么,什么情况下成正比例关系,什么情况下成反比例关系?想一想,成正比例关系和成反比例关系的两种量有什么相同点和不同点?指出:正比例关系和反比例关系的相同点是:都有相关联的两种量(x和y),一种量随着另一种量的变化而变化。不同点是:成正比例关系的两种量中相对应数值的比值一定,成反比例关系的两种量中相对应数值的积一定。
2.判断正、反比例关系。
(1)做练一练第1题。
指名学生口答。提问:判断是不是成比例和成什么比例的根据是什么?
(2)做练习二十二第1题。
指名学生口答。
3.判断x和y这两种量成什么关系,为什么?
(1)y=8x (2)y=
指出:我们根据正、反比例关系的特点,可以判断两种相关联的量成什么比例。如果一道题里两种量成正比例或反比例关系,我们就可以应用比例的知识,根据比值相等或者积相等的数量关系来解答。
三、复习正、反比例应用题
1.做练练第2题。
让学生读题,判断每题里两种量成什么比例。提问:这道题成正比例或反比例的关系,各要根据什么相等来列式解答?指名一人板演,其余学生做在练习本上。集体订正,突出列式的等量关系是比值还是积一定。
2.启发学生思考:
你认为正比例应用题实际上是我们过去学过的哪一类应用题?反比例应用题是哪一类应用题?怎样解答正、反比例应用题?指出:用比例知识解答应用题,要先判断两种相关联的量成什么比例。如果成正比例,根据比值相等列等式解答;如果成反比例,根据积相等列等式解答。
四、课堂小结
成正、反比例的量各有什么特点?成正、反比例量的应用题要怎样解答?
五、课堂作业
练习二十二第2题。
小学数学六年级《比例的应用》教案 12
教学内容:练习八的第59题。
教学目的:通过练习,使学生理解和掌握用正比例,反比例的知识解答应用题的
方法。
教学过程:
一、复习
1.什么叫成正比例的量?它的关系式是什么?
2.什么叫成反比例的量?它的关系式是什么?
3.做练习八的第5题:判断下面每题中的两种量成什么比例关系。
二、课堂练习
教师:上节课我们学习了用正比例、反比例的意义和判断来解应用题,今天我们要通过练习,进一步理解和掌握用正比例、反比例意义和判断来解答应用题的方法。
1.做练习八的第6题。
指名读题,让学生自己解答。集体订正时,请一个同学讲一讲,自己是怎样想的?教师板书; =
教师:如果把这道题的.第三个条件和问题改成要晒17550吨盐,需要多少吨海水?该怎样解答?
让学生口头列出比例式,教师板书出来。
教师小结:像这道题,问题虽然变了,但题中基本数量关系没有变。晒出的盐和海水的吨数成正比例关系,解答这样的应用题的关键:一是要正确判断相关联的两种量是成什么比例,二是要找准相关联的量中相对应的数:
2.做练习八的第7、8题。
集体订正后,指名讲一讲是怎样想的。
3.做练习八的第9题。
做题前,提示学生选用哪三个数据都可以,但所叙述的事情要符合实际情况。订正时,如果学生在编题中的语言不规范,要注意纠正。
小学数学六年级《比例的应用》教案 13
教学内容:课本第63页例2;练一练;《作业本》第28页。
教学目标:进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。
教学重点:在连比中按比例分配应用题的特征与解答方法
教学难点:理解连比(三部分比)的意义与分数应用题的关系
教学关键:理解连比(三部分比)的意义
教学过程:
一、基本练习:
1、你可以想到什么?
(1)某班男、女生人数比是5∶4;
(2)柳树、杨树棵数比是1∶6;
(3)科技书和故事书比是5∶4。
2、练习:
(1)学校有故事书80本,故事书和科技书的`本数之比是2∶3,科技书有多少本?
(2)改编1题中的故事书80本为科技书有80本。
分析:每题有多种不同的解法,想想你能列出几种不同的解法?
二、新授
1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?
(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。
(2)学生尝试解答。
(3)反馈、讲评。
2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?
3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?
三、练一练。P64。
四、课堂小结。
这堂课与上堂课有什么不同吗?你学会了什么?
五、《作业本》第28页。
小学数学六年级《比例的应用》教案 14
教学内容 苏教版九年义务教育六年制小学教材第十二册P35~38。
教学目标
(一)知识教学点
感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。
(二)能力训练点①培养学生发现问题、分析问题、解决问题能力;②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;
③辩证唯物主义的初步渗透
教学重点 比例尺的应用。
教学难点 比例尺的实际意义。
教学过程
一、设置教学情境,感受比例尺
(一)画画比比
1、 估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?
请你估计一下黑板的长和宽。
2、 丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)
3、 画黑板:你能照样子把黑板画在本子上吗?(师巡视)
4、 质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)
5、挑两个黑板图(一个画得不像一个画得较像)出示:
a) 评价:①谁画得更像一点?
②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)
b) 师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)
图上长7厘米,长缩小:350÷7=50 图上长5厘米,长缩小:350÷5=70
宽1.5厘米,宽缩小:150÷1.5=100 宽2.5厘米,宽缩小:150÷2.5=60
c) 点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。
(二)再画再比
1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)
2、课件展示准确的平面图:
3、请你帮老师算算长和宽分别缩小多少倍?
图上长3.5厘米缩小:350÷3.5=100 宽1.5厘米缩小:150÷1.5=100
4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)
二、结合实际,理解比例尺
(一)说一说
①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。
②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。
③图A、图B长和宽比例尺各是多少?分别表示什么?
小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。
④用自己话说说什么叫做比例尺?怎样计算比例尺?
小结:图上距离与实际距离的'比叫做比例尺;比例尺通常写成前项是1的比。
(二)算一算
①下图是我校平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?
评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?
②从1﹕10000这一比例尺上,你能获取那些信息?
板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。
三、联系实际,应用比例尺
(一)求图上距离
1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?
①独立思考,试试看,如感觉有困难小组内小声讨论。
②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?
方法一:400米=40000厘米 方法二:400米=40000厘米
40000÷10000=4(厘米) 40000×1/10000=4(厘米)
方法三:10000厘米=100米 方法四:用比例解(略)等等
400 ÷100=4(厘米)
小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。
③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)
2、练一练:
区委东北是我区闹市区——十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)
3、画一画:
①请准确地画出教室前黑板的平面图。(怎样画才算准确?)
②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。
(二)求实际距离
1、 西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?
①独立思考;②合作交流;③讲评算理。(略)
2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?
(三)新课延伸
1、 南京距大厂40千米,画在这幅图上要画多少厘米?
①独立列式计算(400厘米)。
②要画400厘米,你有何感觉?(太长画不下)
③画不下怎么办?(调整比例尺)
④说说你的调整方案?
2、请拿出标有南京上海的地图,找出比例尺并说说意义。
①同座位间合作算出实际距离。
②一辆汽车从南京早上9﹕00从南京出发赶往上海,要赶下午2﹕00的飞机,如果车速是每小时80千米,问能否赶及?为什么?
2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。
四、课堂总结,回顾比例尺(略)
小学数学六年级《比例的应用》教案 15
教学目标:
1、 结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、 培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的.体积分别是100ml和400ml,__________?(补充问题并解答)
二、新授。
1、教学例2。
(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
① 稀释液平均分成的份数:1+4=5
浓缩液的体积:500× =100(ml)
水的体积:500× =400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4
(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答:
① 三个班的总人数:47+45+48=140(人)
② 一班应栽的棵数: 280× = 94(人)
③ 二班应栽的棵数: 280× = 90(人)
④ 三班应栽的棵数: 280× = 96(人)
答:一班栽树94棵,二班栽树90棵,三班栽树96棵。
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。
练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学反思:
本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。
【小学数学六年级《比例的应用》教案】相关文章:
《比例》小学六年级数学下册教案02-19
小学六年级数学按比例分配教案04-12
数学反比例教案03-25
数学教案-比和比例09-21
《比例的应用》教学反思04-09
小学六年级数学《比例的基本性质》教案11-20
《比例》六年级数学教案02-09
小学六年级上册数学《比的应用》教案11-22