您现在的位置: 范文先生网 >> 教学论文 >> 数学论文 >> 正文

浅谈高中数学应用问题的教学

时间:2007-3-29栏目:数学论文

摘要: 培养和提高学生的数学应用意识,是中学数学教学的迫切要求,在中学数学教学的始终都应注重学生应用意识的培养。高中数学新教材在每章开头的序言,问题引入,例、习题,“实习作业”和“研究性课题”中都编排了大量的应用问题,应根据高中学生的认知规律和思维特点进行应用问题的教学,培养学生的应用意识和应用能力。  

关键词: 数学 课程 应用意识 实践     

培养和提高中学生的数学应用意识,使学生掌握提出、分析和解决带有实际意义的或在相关学科,生产、生活中的数学问题,准确而灵活地运用数学语言研究和表述问题,是中学数学教育教学的迫切要求,在中学数学教学过程的始终都应注重学生应用意识的培养,加大应用问题的教学力度。  

一、高中数学新教材中的应用问题  

传统教材对知识的来龙去脉和数学的应用重视不够,不重视引导学生运用所学知识解决日常生活、生产中遇到的实际问题,学生学数学用数学的意识不够,解决实际问题的能力脆弱。新教材对此做了大的调整,增加了具有广泛应用性、实践性的教学内容,重视数学知识的运用,增强数学应用意识,提高学生分析问题,解决问题的能力,把培养学生运用数学的意识贯穿在教材的各个方面。  

1 、每一章的序言,都编排了一个现实中的应用问题,引入该章的知识内容,以突出知识的实际背景。如在第三章《数列》以趣味话题:“国王对国际象棋棋盘发明者奖励的麦粒数 ”的计算作为章头序言,激发学习欲望,增加教材内容的趣味性。  

在教材的编排上,既用通俗易懂的语言,陈述问题,又附以插图增强直观形象性、趣味性。  

2 、在研究“具体问题”时以实际例子引入课题  

高中数学的十章内容中,分别就概念引入、实例说明、数学表示等方面有三十一处都恰当的运用了实际问题和具体情景。如用“不同重量信件的邮资问题”表示分段函数,用功和位移的关系引入向量数量积的概念等。实例引入增强了问题的实际背景,为顺利解决问题作了铺垫。  

3 、例题中的应用问题  

例题中安排应用问题,一方面可以培养学生阅读能力、分析问题、解决问题的能力,培养学生的应用意识,而且通过范例讲解,使学生掌握解决应用问题的一般思想和方法。新教材的十章内容中国共产党有 41 个例题是涉及数学应用的,占例题总数的 14.6% ,它们都非常接近学生的生活实际和所学知识,难易适中,示范性强。  

4 、练习、习题、复习题中增加了应用问题的分量  

为使学生巩固所学知识,逐步提高分析问题、解决问题的能力,新教材在练习题,习题,复习题中增加了大量的应用问题,其中练习题有 45 题,占总数的 12.4% ;习题有 105 题,占总数的 18.15% ;复习题有 50 题,占总数的 14.91% 。分别涉及增长率、行程问题、物理、化学、生物问题,储蓄等各个方面,量大面宽,情景新颖,融知识性,趣味性,自主实践性于一体。  

5 、阅读材料  

问题生动有趣,贴近学生生活,扩大学生阅读面的阅读材料,新教材中国共产党安排了 15 个,其中:  

( 1 )历史故事方面的,如第二章《函数》的“对数和指数发展简史”,第五章《平面向量》中的“人们早期是怎么样测量地球的半径的?”  

( 2 )介绍数学应用方面,如第八章《圆锥曲线的光学性质及应用》,第十章《抽签有先后,对各人公平吗?》。  

( 3 )扩充知识方面,有第五章《平面向量》中的“向量的三种类型”等。  

6 、新增了“实习作业”和“研究性课题”。  

为了使学生亲自体验数学知识的应用,灵活运用数学知识解决实际问题,加强学生学习的自主活动性,培养综合运用知识的能力。新教材安排了三次实习作业,一是 “函数关系的实习作业”,让学生调查研究附近商店、工厂、学校潜在的函数问题;二是利用“平面向量”知识解决不能直接测量的距离、方向问题。三是“线性规划的实际应用”。  

研究性课题是培养学生应用意识和创新能力的重要内容,新教材分别在第三、五、七、九章中安排了四个研究性课题:“分期付款中的有关计算”、“向量在物理学中的应用”、“线性规划的实际应用”、“多面体欧拉定理的发现”,让学生动手操作,选择优化方案、归纳概括,恰当建模,运用理论指导实践。  

二、高中数学应用题问题的教学实践  

高中学生年龄一般在 15 — 17 周岁,他们认识过程的各种心理成份虽已接近成人的水平,但智力活动带有明显的随意性,其抽象思维从“经验型”向“理论型”急剧转化。能够逐步的摆脱具体形象和直接经验的限制,借助于概念进行合乎逻辑的抽象思维活动,开始在教师帮助下独立地搜集事实材料,进行分析综合,抽象概括事物的本质属性。因此,应结合学生的心理特点和思维规律,进行应用问题的教学。  

1 、重视基本方法和基本解题思想的渗透与训练  

为培养学生的应用意识,提高学生分析问题解决问题的能力,教学中首先应结合具体问题,教给学生解答应用题的基本方法、步骤和建模过程,建模思想。  

教学应用题的常规思路是:将实际问题抽象、概括、转化 -- à 数学问题 à 解决数学问题 à 回答实际问题。具体可按以下程序进行:  

( 1 )审题:由于数学应用的广泛性及实际问题非数学情景的多样性,往往需要在陌生的情景中去理解、分析给出的问题,舍弃与数学无关的因素,抽象转化成数学问题,分清条件和结论,理顺数量关系。为此,引导学生从粗读到细研,冷静、慎密的阅读题目,明确问题中所含的量及相关量的数学关系。对学生生疏情景、名词、概念作必要的解释和提示,以帮助学生将实际问题数学化。  

( 2 )建模:明白题意后,再进一步引导学生分析题目中各量的特点,哪些是已知的,哪些是未知的。是否可用字母或字母的代数式表示,它们之间存在着怎样的联系?将文字语言转化成数学语言或图形语言,找到与此相联系的数学知识,建成数学模型。  

( 3 )求解数学问题,得出数学结论  

( 4 )还原:将得到的结论,根据实际意义适当增删,还原为实际问题。  

例:某城市现有人口总数 100 万人,如果年自然增长率为 1.2 %,写出该城市人口总数 y( 人 ) 与年份 x( 年 ) 的函数关系式  

这是一道人口增长率问题,教学时为帮助学生审题,我在指导学生阅读题时,提出以下要求:  

——粗读,题目中涉及到哪些关键语句,哪些有用信息?解释“年自然增长率”的词义,指出:城市现有人口、年份、增长率,城市变化后的人口数等关键量。  

——细想,问题中各量哪些是已知的,那些是未知的,存在怎样的关系?  

——建模,启发学生分析这道题与学过的、见过的哪些问题有联系,它们是如何解决的?对此有何帮助?  

学生讨论后,从特殊的 1 年、 2 年…抽象归纳,寻找规律,探讨 x 年的城市总人口问题: y=100(1+1.2%) x .  

2 、引导学生将应用问题进行归类  

为了增强学生的建模能力,在应用问题的教学中,及时结合所学章节,引导学生将应用问题进行归类使学生掌握熟悉的实际原型,发挥“定势思维”的积极作用,可顺利解决数学建模的困难,如将高中的应用题归为:①增长率(或减少率)问题②行程问题③合力的问题④排列组合问题⑤最值问题⑥概率问题等。这样,学生遇到应用问题时,针对问题情

[1] [2] 下一页

下页更精彩:1 2 3 4 下一页