您现在的位置: 范文先生网 >> 教学论文 >> 数学论文 >> 正文

“快乐”数学

时间:2007-3-29栏目:数学论文

题记:数学是是根据某些简单规则使用毫无意义的符号在纸上进行的游戏,是制造快乐的游戏。
——希尔伯特

快乐教育在美国被称为“have fun”,这种快乐不是舞台上的,也不是老师示范后做出来的,而是从学生健康的心里流淌出来的。可以说,世界上最好的教育在本质上都是快乐的。因此快乐的数学就是一种用愉快学习环境去唤醒学生的学习经验激活学生情思的教育。它让学生在学习中能得到享受,在“享受学习”中,逐渐学会做人;学会求知;学会做事。
教育学家乌申斯基说:“没有丝毫兴趣的强制学习,将会扼杀学生探索真理的欲望。”兴趣是学习的重要动力,也是创新的重要动力,而创新需要兴趣来维持。数学的学习由于其特有的抽象而尤为明显,笔者就如何让学生享受“快乐”数学学习谈几点自己的看法。

一   创设问题情境,让学生品味数学的“好玩”

丰富多彩的生活中蕴藏着大量的数学知识,我们只要善于让学生发现这些知识,并用来解决实际问题,学生将品味到数学的“妙趣横生,其乐无穷”
如在概率的教学中可以引导学生实验:一个袋子里放入一些黑色的棋子,10颗白色的棋子;搅拌均匀,让几个学生从袋子中随意抓出一些棋子,分别数一数白子和黑子的颗数,并记录下来,几次以后,学生自己就发现了规律: .
又如四边形的内角和教学中可以引入故事进行讨论:小刚家有个木材加工厂,正好读初二的他看到很多丢弃的形状和大小都完全相同的四边形边角废料,小刚说如果能把这些废料拼成地板,这样既环保又能赚钱;旁边的工人师傅都说他傻的可爱,异想天开,你们认为他的想法能实现吗?
实际的操作加上理论的支持,学生的兴趣空前高涨

二   趣题趣话引导学生学数学
出人意料的数学结论能给学生极大的心灵震撼,有些学生由于缺乏较强的数学意识,得到的结果往往是错误的,有时还会产生“不可思议”的感觉。
如:A,B,C三人进行100米比赛,当A到达终点时,B离终点还有1米,C离终点还有2米,则当B到达终点时,C离终点还有多少米?(假设各人的速度保持不变)
错解与诊断:许多同学误认为C离终点还有1米,其实不然,因为在A到达终点时,B,C两人各跑了99米和98米,这说明B,C的跑速是不同的,而要实现当B在跑1米到达终点时,C距终点还 有1米,则必须B,C的速度相同,与题目条件矛盾,所以答案“1米”肯定是错误的。
正解:设A到达终点所用时间为t秒,则B,C的速度为 , ,B再用1  秒到达终点,C在 秒时间内所跑的路程为   = 米, C离终点的路程为100-(98+ )= 米。  
通过问题的解决,许多同学会认识到原来数学是如此的生动有趣,丰富多彩。原来看上去很简单的问题竟有如此不同的结论,以前自己对数学和数学方法的理解也太片面,太狭窄了。
三   从学生的生活经验出发,引出对新知识的渴求
如在对学生进行角度的教学中出示课件(一个学生模样的青年,在聚精会神地打台球)从而探讨:打台球,需要精确地掌握击球的角度,你们看,这个人是多么聚精会神地对击球的角度进行调整判断呀!
打台球,是一项常见的运动,学生们有打台球的经验。即使没有打过台球,踢足球,打篮球,总是有经验的。而足球的射门,篮球的投篮,皆与角度有关,这样就自然而然地把学生们对球类运动的关注,引导到对角度的关注上来。
四  游戏进入课堂,数学更加好玩
教材上的概念、性质等一般都是以结论或者精练的数学语言呈现的,学生理解它们,会有一定的困难,游戏可以改变知识的呈现方式,即通过具体的经验去为所必须学习的内容做准备。
例如,用掷骰子来引入无理数,在小数点后,依次写出骰子出现的数字。在游戏中体会事件的随机性,通过1、2、3、4、5、6各个数字的随机出现,发现小数点后数字的无规律性;让学生感受到无理数是事实在在的一类数。
玩中学  学中玩  激趣乐学

“兴趣是最好的老师” 。要使学生学好数学,首先要使学生喜欢数学。根据学生好动、好玩的特点,教学时适当采用游戏、操作活动、合作互动、竞赛、课外拓展等组织形式,把枯燥的数学知识学习与学生乐此不疲的活动有机结合,让学生在“玩中学” ,“学中玩” ,从而培养学生学习数学的兴趣,养成好学、乐学的习惯。
    “知之者不如好之者,好之者不如乐之者。”爱因斯坦也曾说过:“兴趣是最好的老师” 。数学在所有学科中是最难让学生感兴趣的,它充满数字、算理、计算公式、图形等等,既抽象又枯燥。只能靠学生的思维能力和想象力去理解接受。但学生的思维比较具体、形象,自主能力较差,同时又活泼好动,心理素质还很不成熟,他们对数学学科的兴趣在很大程度上还取决于教师所创设的教学情境。教师只有依据学生的认知规律以及学生的年龄特征,精心设计组织教学,尽量做到玩中学,学中玩,以激发学生学习数学的兴趣,充分调动学生学习的积极性,才能使学生自觉主动地学习,从而达到好学,乐学的境界。

参考文献:
1 王幼军   数学中游戏因素及其对数学的影响
2 中学数学教与学  2003 第8期

下页更精彩:1 2 3 4 下一页