您现在的位置: 范文先生网 >> 教学论文 >> 数学论文 >> 正文

“平行四边形的面积”教学设计与评析

时间:2007-3-29栏目:数学论文

    设计:王克勤 聊城市河东小学
    评析:耿法太 聊城地区教研室
    教学目的
    1.使学生理解平行四边形的面积计算公式,并会应用公式计算平行四边形的面积。
    2.培养学生的操作能力和思维能力。
    3.有机地对学生进行辩证唯物主义观点的启蒙教育。
    教学重难点:
    重点:面积的计算。难点:公式推导。
    教学过程
    一、复习
    1.填空
    (1)( )叫做面积。
    (2)常用的面积单位有( )。
    2.通过测量,分别说出下面每个平行四边形的底和高。(单位:厘米)
    (附图 {图})
    3.先测量,后计算下面各图形的面积。(单位:厘米)
    (附图 {图})
    〔评析:长方形的面积的计算是平行四边形面积计算的生长点,是认知前提,是可以利用的起固定作用的 知识。在一堂新授课中,找准知识的生长点是很重要的。在影响学习的所有变量中,按布卢姆的观点,认知前 提占50%。〕
    二、导入新课
    平行四边形的面积怎样计算呢?这一节课我们就研究这个问题。
    板书课题:平行四边形的面积。
    三、讲授新课
    1.用数方格的方法求平行四边形的面积。
    (1)数一数:
    ①用投影片投影出示下图。(每个小方格代表1平方厘米)
    (附图 {图})
    ②请同学们用数方格(不满一格的都按半格计算)的方法,分别求出图中长方形和平行四边形的面积。
    长方形的面积是( )。
    平行四边形的面积是( )。
    〔评析:直观认识两图形的面积相等〕
    (2)比一比:
    ①长方形的长和平行四边形的底有什么关系?宽和高呢?
    ②长方形的面积和平行四边形的面积相等吗?
    (3)小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
    〔评析:通过比较,使平行四边形与长方形联系起来,查明面积相等的原因。认识进一层,为知识的迁移 提供了依据。〕
    2.推导公式
    (1)投影演示
    教师用割补的方法,引导学生把一个平行四边形变成长方形。
    (附图 {图})
    〔评析:“引导”体现了教师的主导作用。〕
    (2)学生操作
    学生拿出课前准备好的平行四边形状的卡片,自己动手用剪刀按下面割补的方法,把它变成一个长方形。
    (附图 {图})
    (割下补在图的右边)
    〔评析:任一个平行四边形,通过割补都可以变成和原平行四边形面积相等的长方形。补充一个实例,特 别是学生自己动手,使学生确信无疑。为归纳公式提供了充分的事实。培养了学生动手操作的能力。人人动手 ,既调动学习积极性,又可面向全体。〕
    (3)提问
    ①割补成的长方形的长和宽与原来的平行四边形的底和高有什么关系?
    ②割补成的长方形的面积与原来的平行四边形的面积有什么关系?
    (4)推导公式
    填□:
    长方形的面积 =长×宽
    ↓ ↓
    平行四边形的面积=□×□
    〔评析:水到渠成,实现知识的迁移。培养了学生推理的能力。〕
    (5)验证公式
    学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
    〔评析:前后结果一致,进一步说明公式的正确性。〕
    3.自学例1
    学生自学例1后,教师根据学生提出的问题讲解。
    〔评析:自己动手应用公式计算面积。培养学生解决实际问题的能力。人人都做,又一次体现面向全体学 生。〕
    四、课堂练习
    第一组:
    1.下图中每个小正方形的边长都是1厘米,用数方格和应用公式计算两种方法求平行四边形的面积。
    (附图 {图})
    2.算出下面每个平行四边形的面积。(单位:分米)
    (附图 {图})
    第二组:
    根据下表中给出的平行四边形的数据,填空格。
    (附图 {图})
    1.下图中两个平行四边形的面积相等吗?为什么?
    (附图 {图})
    2.下图中已知正方形的周长是20米,求出平行四边形的面积。
    (附图 {图})
    〔评析:练习设计由浅入深,层次清楚。第一组是基本练习,意在巩固所学知识。第二组表式练习,可以 口算结果,加大练习量;后面几个计算底或高的填空练习,使公式运用达到灵活的程度。第三组是综合性练习 ,通过对图形的观察、推理,找到解题方法,培养学生逻辑思维能力。〕

[1] [2] 下一页

下页更精彩:1 2 3 4 下一页