您现在的位置: 范文先生网 >> 教学论文 >> 数学论文 >> 正文

怎样提高运算能力

时间:2007-4-22栏目:数学论文

怎样提高运算能力


摘要:运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。

关键词:运算能力


    运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。目前,职业高中的学生运算能力是很差的,不少职高老师埋怨:“学生的计算能力太差了,连简单的运算都过不了关,甚至数学基础好的学生的运算结果也经常出错。”这种状况出现的原因是多方面的。有的学生不对简单的公式、公理、定理进行记忆、理解,不明算理,机械地照搬公式,不能进行灵活运用;有的学生不注意观察、不进行联想、不进行比较,不顾运算结果,盲目推演,缺乏合理选择简捷运算途径的意识;也有的学生对提高运算能力缺乏足够的重视,他们总是把“粗心”、“马虎”作为借口;也有相当多的老师只着重解题方法和思路的引导,而忽视对解题思路的归纳总结。这样不仅影响了学生思维能力的发展,也必然影响教学质量的提高。本文就如何提高职高学生的运算能力,从以下几个方面谈谈自己的粗浅看法。
一、灵活运用公式,举一反三,提高学生的计算能力
在职业高中阶段,许多专业的学习都经常用到简单的数值运算,但数值运算恰恰是职高学生的薄弱之处,他们的数值运算能力很差。其实,只要我们教师能进行恰当的引导,灵活运用公式,举一反三,也能提高学生的运算能力。举个例子来说:计算出现76的平方,很多同学只会用竖式相乘求出结果。其实,两位数的平方可以用完全平方公式求解。在初中,我们学过完全平方公式,许多职高学生能默出公式,但讲到灵活运用这些公式则显得很不够。我告诉他们:把7看成a,6看成b,那么76的平方可以用如下的方法求解:
 
上式中的4、8、3都是产生的进位,分别与其高位的数相加即可。同学们听了兴趣盎然。我又出了一个同样问题: 。很快就有不少同学用我刚才的方法计算出来了: 。显然,用完全平方公式能更快地求出结果。这个公式中并没有深奥的理论知识,关键是我们在平时是否进行了恰当的运用,是否将这个公式的实质传授给了学生,让他们理解,并能进行灵活运用而已。又如初中学习的平方差公式,在职业高中的学习阶段经常用到,但同学们就是不会用(不去用)。计算 的值,许多同学是先计算出每个数的平方,再计算出差的结果。其实,用平方差公式很快便能结果:
 
初、高中有许多数学公式,能够简化计算,只要我们教师恰当地引导学生,经常运用这些公式,就能提高学生的计算能力,这里我就不一一枚举了。
二、注意观察,合理联想,善用比较意识,有助于运算能力的提高
许多职业学校教师认为:职业学校的学生初中阶段的学习很不扎实,基本知识和基本方法掌握不牢固,应牢记一些固定的知识和方法,并要求他们运用这些知识或方法去解决问题。诚然,固定的思维方法在运算中有积极的一面,但也有消极的影响。当学生掌握了某一种知识(方法)后,遇到问题时往往习惯用类似的旧知识(方法)去解决问题,久而久之,必然会出现思维的惰性,缺乏多方位、多角度思考问题的意识,不利于运算速度的提高。更何况,职业学校的学生本身就思维活跃,只想寻求更简单而快速的运算方法,以便有更多的时间去做其他的事情。因此,固定的思维方法会影响学生运算的速度,使运算过程繁冗不堪,并因此而使学生厌恶对数学的学习。我在教学中就经常引导学生对问题进行多方位、多角度思考,努力培养他们的观察能力、联想能力、比较意识,寻求问题的最佳解决途径。
例如:直线斜率为1,且与圆 相交所得弦长为8,求直线方程。
大部分的学生一开始就会用弦长公式和韦达定理来解,即设所求直线方程为y=x+b,将直线方程代入圆方程得: ;利用 “弦长= ”来求。这种方法固然可以求出直线方程,但运算运算过程繁冗不堪,不利于学生运算能力的提高。
在上题中,我除了用上述方法讲解外,还提出了问题:有没有人能用更快、更简单的方法求出解?在思索中,我提示了这样线索:圆心到弦的距离、弦长(弦长的一半)、半径三者有什么关系?进而我要求学生用这种方法进行了求解:设所求直线方程为y=x+b,则由点到直线距离公式和上面三者的关系有  ,即 ,推出 。
讲述了这种方法后,我将这种方法和前面的方法进行比较,并指出这种方法的运算速度要快很多。比较意识是解决问题的一个重要方向。解题时往往解决问题的途径很多,这就要求我们善于选优而从。有的学生缺乏比较意识,做题时往往找到一种方法就抱着死做下去,即使繁冗,也不在乎,认为做对就行了。老师在讲评试题时,往往容易忽略多种解法当中简捷方法的优先性,这就要求我们教师平时要进行知识积累和创新,并将这种创新的思想传授给学生,让学生对某个问题的多种解法进行比较,找到其最优的解法。
三、经常总结规律,提高运算能力
    运算能力既不能离开具体的数学知识而孤立存在,也不能离开其他能力而独立发展,运算能力是和记忆能力、观察能力、理解能力、联想能力、表述能力等互相渗透的,它也和逻辑思维能力等数学能力相互支持着。因而提高运算能力的问题,是一个综合问题,在教学过程中,只有经常总结规律,不断引导,逐渐积累,才能提高运算能力。
例如:在圆锥曲线中,有许多需要利用定义解题的问题,我就对学生提出要求:①理解定义;②观察圆锥曲线的几何特性;③归纳这类问题的基本解题思路和方法,总结规律,提高运算能力。就此,我设计了这样一些问题,并进行了实战演习:⑴已知△ABC顶点A、B坐标分别为(0,5)、(0,-5),周长为24,求顶点C的轨迹方程;⑵动圆与两圆 和 都相切,求动圆圆心的轨迹方程;⑶若A点为(3,2),F为抛物线 的焦点,点P为抛物线上任意一点,求|PF|+|PA|的最小值及取得最小值时的P的坐标;⑷P与定点A(-1,0)、B(1,0)的连线的斜率的积为-1,求动点P的轨迹方程;⑸点M到F(3,0)的距离比它到直线x+4=0的距离小1,求点M的轨迹方程。
同学们进行了近20分钟的演算,才有一位同学做完。又过了几分钟后,我对这些问题进行了归纳总结,指出它们的解题的根本思路:①理解圆锥曲线定义;②观察圆锥曲线的几何特性;③利用定义解题。通过归纳总结,同学们对这类问题的运算能力有了很大的提高。
逻辑运算能力也是运算能力的一部分,恰当地运用逻辑运算能力能够对是非题进行准确的判断。例如:在下列等式中
 
成立的共有(    )
A、1个       B、2个     C、3个       D、4个
上题中⑴与⑵矛盾,而⑵与⑶属同一问题,又⑴与⑹也属同一问题,⑷与⑸矛盾,故上述问题中正确的等式只能是3或4个。而⑴正确,故⑹正确,从而有正确的命题数为3个。当然此问题也可直接由等式判断而得。 由此可知,恰当地运用逻辑运算能力能够提高学生的运算能力。
运算能力不是一朝一夕就能培养形成的,而是一个长期和连续的过程,小学、初中、高中(职业高中)三个阶段都要持续培养。同时,学生的运算能力也不仅只是数学教师的职责,同时也是各理工科教师的职责。因此,我们高中(职业高中)的各理工科教师都应重视学生运算能力的培养。运算能力的初步形成后,还必须在今后应用中得到巩固、发展和深化,才能逐步提高。

下页更精彩:1 2 3 4 下一页