您现在的位置: 范文先生网 >> 理工论文 >> 电子通信论文 >> 正文

防腐电源智能监控节点的设计

时间:2007-1-20栏目:电子通信论文

摘要:介绍了一种防腐电源智能监控节点的设计方法及相关的硬件电路,用以实现野外防腐电源的无人化监控与检测。研究了系统硬件结构、信号调理电路以及有关芯片与微处理器的接口电路,阐述了监控软件的设计思路。试验表明,该系统结构简单、成本低廉、性能可靠,能满足工业现场的需要。

    关键词:防腐电源 监控节点 单片机

金属发生腐蚀的现象随处可见。腐蚀给金属材料造成的直接和间接损失是巨大的,以至造成灾难性的破坏事故,引起严重的环境污染。研究表明,因腐蚀造成的损失一般占国民生产总值的3%~4%,其中约有15%是可以通过现有的防腐技术避免的,而阴极保护技术的发展又是与防腐技术的进步分不开的。

防腐电源是阴极保护技术中最为关键的设备。由于易腐蚀的金属构件大部分分布在野外或者地下,并且分布范围广,如石油管道、输电线路、海上平台等,所以必然要求发展可靠性高、智能化的新型防腐电源,并且要求通过工业网远程采集现场数据,进行计算分析,实现远程控制,从而提高现场设备的可靠性,实现无人管理。
(范文先生网www.fwsir.com收集整理)
1 防腐电源系统的结构组成

阴极保护技术简单地说就是测量被保护金属构件的电位(即管地电位),并根据其大小变化,调节补偿保护电流大小,起到对金属构件的保护作用。图1是远程监控防腐电源系统示意图。

很显然,防腐电源是阴极保护系统中最核心的设备,其监控系统要能对其电位、电流、电压等运行参数进行检测与控制,实现网络化监控,满足实时、快速响应的要求。

2 监控节点的硬件设计

系统硬件由两块电路板组成。一块为模拟板,主要对来自防腐电源的测量信号进行滤波、放大、采样保持,以及自动选择放大倍数等;一块为数字板,主要完成采样信号的模/数转换、计算(消除噪声并还原信号)、参数设置和数据传输[1]等。监控系统的总体框图如图2所示。
防腐电源智能监控节点的设计
    监控系统直接测量的是防腐电源现场的电信号,包括电压信号和电流信号。防腐电源的现场环境恶劣,待测信号中夹杂着诸多干扰信号。前置调理电路包括差模放大电路和有源滤波电路,用来抑制现场信号中的共模干扰信号和高频干扰信号。系统通过485总线与上位机进行通讯,使用约定的协议交换数据。

    2.1 模拟电路设计

模拟电路框图如图3所示,其中Vinl、Vin2、Iinl、I-in2为从防腐电源现场采集的信号。由于待测信号比较微弱,现场环境又比较恶劣,待测信号中叠加了很多干扰信号,为了从噪声中提取出有用的信号,采用差模调理电路和有源滤波电路相结合的调理电路对输入信号去干扰,然后通过电压分档电路估算信号的范围,提供给单片机。单片机根据给定的信号计算出合适的放大倍数,进而控制可编程放大器AD526的放大倍数,将已调理的信号放大到有效范围,输入到数字板上的AD574进行模/数转换。
防腐电源智能监控节点的设计
    2.1.1 信号调理设计

通过试验对现场信号进行分析,发现干扰信号主要来自电源线的耦合干扰、电源的瞬态电压干扰和外部电磁辐射干扰。因此,这部分电路的作用有两个:一是根据干扰信号的频率特点设计滤波电路,有效地滤除干扰信号;二是对输入信号适当放大,完成阻抗转换。

2.1.2 自动增益调节电路的设计

调理好的信号通过多路模拟开关进行逐一选定和处理。信号通过模拟开关后,一路进入分档电路测定范围,另一路进入放大单元放大到合适的工作范围。

    AD526是专用五级变增益运放,增益级数为G=1、2、4、8、16,增益控制输入脚有三个。设计中将两个AD526串联,这样就构成了1~256增益的放大单元,变增益放大电路如图4所示。
防腐电源智能监控节点的设计
&nb

[1] [2] 下一页

下页更精彩:1 2 3 4 下一页