您现在的位置: 范文先生网 >> 理工论文 >> 电子通信论文 >> 正文

多传感器信息融合技术在智能驾驶系统中的应用

时间:2007-1-20栏目:电子通信论文

摘要:介绍了当今国际上流行的几种智能驾驶系统,并分析了采用单一传感器的驾驶系统中存在的问题,给出了信息融合技术的原理和结构。讨论了多传感器信息融合技术在智能驾驶系统(ITS)中的应用算法及其有待进一步解决的问题。

    关键词:贝叶斯估计 信息融合 障碍探测 智能驾驶

随着传感器技术、信息处理技术、测量技术与计算机技术的发展,智能驾驶系统(辅助驾驶系统一无人驾驶系统)也得了飞速的发展。消费者越来越注重驾驶的安全性与舒适性,这就要求传感器能识别在同一车道上前方行驶的汽车,并能在有障碍时提醒驾驶员或者自动改变汽车状态,以避免事故诉发生。国际上各大汽车公司也都致力于这方面的研究,并开发了一系列安全驾驶系统,如碰撞报警系统(CW)、偏向报警系统(LDW)和智能巡游系统(ICC)等。国内在这些方面也有一定的研究,但与国外相比仍存在较大的差距。本文将主要讨论多传感器信息融合技术在智能驾驶系统(ITS)中的应用。

1 ICC/CW和LDW系统中存在的问题

1.1 ICC/CW系统中的误识别问题

ICC/CW系统中经常使用单一波束传感器。这类传感器利用非常狭窄的波束宽度测定前方的车辆,对于弯曲道路(见图1(a)),前后车辆很容易驶出传感器的测量范围,这将引起智能巡游系统误加速。如果前方车辆减速或在拐弯处另一辆汽车驶入本车道,碰撞报警系统将不能在安全停车范围内给出响应而容易产生碰撞。类似地,当弯曲度延伸时(见图1(b)),雷达系统易把邻近道路的车辆或路边的防护栏误认为是障碍而给出报警。当道路不平坦时,雷达传感器前方的道路是斜向上,小丘或小堆也可能被误认为是障碍,这些都降低了系统的稳定性。现在有一些滤波算法可以处理这些问题并取得了一定效果,但不能彻底解决。
(范文先生网www.fwsir.com收集整理)
    1.2 LDW系统中存在的场景识别问题

LDW系统中同样存在公共驾驶区场景识别问题。LDW系统依赖于一侧的摄像机(经常仅能测道路上相邻车辆的位置),很难区分弯曲的道路和做到多样的个人驾驶模式。LDW系统利用一个前向摄像机探测车辆前方道路的地理状况,这对于远距离测量存在着精确性的问题,所有这些都影响了TLC(Time-to-Line-Crossing)测量的准确性。现常用死区识别和驾驶信息修订法进行处理,但并不能给出任何先验知识去识别故障。

2 多传感器信息融合技术在ITS系统中的应用

针对以上系统存在的一些问题,研究者们纷纷引入了多传感器信息融合技术,并提出了不同的融合算法。基于视觉系统的传感器可以提供大量的场景信息,其它传感器(如雷达或激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于1999年提出的CLARK算法(Combined Likelihood Adding Radar)和Institude Neuroinformatik提出的ICDA(Integrative Coupling of Different Algorithms)算法等方法实现。

2.1 传感器的选择

识别障碍的首要问题是传感器的选择,下面对几种传感器的优缺点进行说明(见表1)。探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。不过在ITS系统中除了上文提出的场景限制外,还有以下问题。首先因其只能在10m以内有效使用,所以并不适合ITS系统。另外超声波传感器的工作原理基于声,即使可以使之测达100m远,但其更新频率为2Hz,而且还有可能在传输中受到其它信号的干扰,所以在CW/ICC系统中使用是不实际的。

表1 传感器性能比较

传感器类型 优  点 缺  点 超声波
视觉
激光雷达
MMW雷达 价格合理,夜间不受影响。
易于多目标测量和分类,分辨率好。
价格相合理,夜间不受影响
不受灯光、天气影响。 测量范围小,对天气变化敏感。
不能直接测量距离,算法复杂,处理速度慢。
对水、灰尘、灯光敏感。
价格贵

[1] [2] [3] 下一页

下页更精彩:1 2 3 4 下一页