您现在的位置: 范文先生网 >> 理工论文 >> 电子通信论文 >> 正文

基于混沌电路设计阵列触觉传感器的采集系统

时间:2007-1-20栏目:电子通信论文

基于混沌电路设计阵列触觉传感器的采集系统

根据上述和初始时刻x0=x'0=Vi,可得:

基于混沌电路设计阵列触觉传感器的采集系统

因此,通过将帐篷映射迭代输出的格雷码序列gi(i=0,1,2,…),转换成贝努利移位映射的二进制序列bi(i=0,1,2,…),可推算出初始值(输入信号的二进制数字量),即

基于混沌电路设计阵列触觉传感器的采集系统

式(7)中{Vin}表示输入信号的二进制数字量。gi(i=0,1,2,…)就是经过帐篷映射完成了对输入信号的非线性放大和A/D转换的格雷码形式的数字量。

2.2 混沌开关电容A/D转换电路的实现

利用并关电容技术进行电路设计,有其独特的优点:电路的性能与电容无关,只取决于电容之比,两个电容比值的误差小于1/1000,因此电路运算精度高;电路便于实现大规模集成,因而电容体积小、工作可靠、成本低,功耗小(一个开关电容A/D转换器功耗4mW)等。这些优点对模拟式阵列触觉传感器信号采集系统最有利,因此该系统需要大量的ADC。

图2 混沌开关电容A/D转换电路

    基于帐篷映射的开关电容A/D转换电路如图2所示。运放A1、A2及周围的电路完成帐篷映射,即完成对输入信号的非线性放大和A/D转换;C4、C5、A3及周围的电子模拟开关组成保持电路,输出信号V0为输入信号的格雷码形式的数字量。图3为电路时序控制逻辑。

图2电路,当启动信号为高电平时,电子模拟开关指向“1”端,输入信号Vi接通。延时t1时间后,D触发器产生一个脉冲信号,这时,若0≤Vi≤0.5,则电子模拟开关S1指向“2”端,C1、C3和A2及有关的电子模拟开关构成一个开关电容比例延时器,如图4所示。在(n-1)T时,Vi给C1充电,充电电荷为C1Vi(n-1),C3被短路,V02(n-1)=0;在nT时,C1中电荷转移到C3中,充电电荷为C3V02(n),由电荷守恒原理,其差分方程为:

C1Vi(n-1)=C3[V02(n)-V02(n-1)]=C3V02(n)    (8)

式(8)经过Z变换可得该电路Z域传递函数:

H(Z)=V02(Z)/Vi(Z)=(C1/C3)Z -1    (9)

若取C3=0.5C1,则有:

H(Z)=V02(Z)/Vi(Z)=(C1/C3)/Z -1=(C1/0.5C1)Z -1=2Z -1    (10)

可见,图4的电路具有起放大作用的比例延时功能,实现了对输入信号的翻倍,即实现了y=2x的运算;同时对C4充电,当下一个“o”脉冲为高电平时,C4中电荷转移到C5中,这时开关S0指向“2”端,把输出信号Vo反馈到输入端,给C1充电,实现迭代运算。经过n次迭代后,使Vi信号入大,直到可观测为止。
基于混沌电路设计阵列触觉传感器的采集系统
    同理,当0.5≤Vi≤1时,Vi向C2充电,电子模拟开关S2指向“2”端,这时,C2、C3和A2构成另一个开关电容比例延时器,把式(9)中的C1换成C2,就是这个比例延时器的Z域传递函数。“e”脉冲为高电平时,C2中电荷Q=C2Vi转换到C3中,若取C3=0.5C2,就实现了y=2(1-x)的运算;当下一个“o”脉冲为高电平时,C4中电荷转移到C5中,这时开关S0指向“2”端,把输出信号Vo反馈到输入端,给C2充电,实现迭代运算。经过n次迭代后,使Vi信号放大到可观测为止。

这样,经过一个周期T,完成了对Vi一个样点的采集。如此周而复始地进行A/D

上一页  [1] [2] [3] 下一页

下页更精彩:1 2 3 4 下一页