您现在的位置: 范文先生网 >> 理工论文 >> 电子通信论文 >> 正文

EMT系统边界磁场检测线圈的动态补偿及图像重建

时间:2007-1-20栏目:电子通信论文

摘要:提出了一种应用于电磁层析成像(EMT)系统的磁检测线圈的动态补偿方法,实现了被测空间边界磁场检测的系统误差补偿。经过EMT系统的图像重建实验证明,这种补偿方法能够提高图像重建的精确性。

    关键词:电磁层析成像 工业CT 传感器 图像重建

电磁层析成像(Electromagnetic Tomography,EMT)技术是近十年来发展起来的一种新型过程层析成像技术[1]。它将电磁感应原理与“由投影重建图像”的理论相隔合,通过检测被测空间边界的磁场信息重建空间中导电、导磁物质的时空分布图像,而且其传感器具有非介入、非接触和无危害的检测优点,因此可应用于工业过程中多相流检测[2]、化工分离、异物监测、地质勘探及生物电磁学研究[3]等领域。EMT系统图像重建质量的影响因素之一是其检测系统的准确性和测量的一致性。在检测系统的传感器设计中,检测边界磁场的多个检测线圈在工艺上难以做到完全一致,由此将直接导致重建图像的失真。为消除这种不一致性对图像重建造成的影响,作者设计了一种动态补偿算法,通过在多个激励方向下对检测线圈做综合补偿,提高了图像重建的精神性。
(范文先生网www.fwsir.com收集整理)
1 EMT系统结构及检测特点

EMT系统的结构如图1所示。左边圆形结构为可安装于工业多相流管道的传感器截面。在被测管道的中心分布有多相流动物质,系统的检测目的是通过非接触、非介入的方式将管道内的不同物质的分布图像在计算机上得以重建,进而分析出多相流体的各种特征参数,并应用于测控系统中。这实现这一目的,由计算机控制图1所示的激励模式选择和激励信号分配系统,由激励系统在被测管道中激发出特定的激励场;然后与医学CT类似,使激励场在空间连续旋转,旋转的同时检测边界磁场的畸变情况,并由数据采集与处理系统实现磁场信号的解调;最后应用图像重建算法重建出被测空间的物质分布。

作者用柔性激励极板阵列实现的EMT传感器[4]的截面如图2所示。传感器由内到外依次是管道壁、检测线圈、激励层和屏蔽层。其中,检测线圈由8个沿管道外壁待距离分布的精密绕组构成,完成边界磁场的测量;激励层由柔性激励极板阵列构成;EMT系统边界磁场检测线圈的动态补偿及图像重建电磁屏蔽层由铁氧体和波莫合金构成。数据采集与信号处理电中实现各个激励角度条件下的边界磁场测量,激励和检测由图像重建计算机协调控制,同时该计算机完成图像重建和多相流特征参数的提取。激励极板阵列由32个均匀分布的柔性极板构成,通过改变极板的电流分布可实现不同的激励方式。其中,管道半径Rp=35mm,检测线圈半径Rd=38.42mm,激励线圈半径Re=55mm,磁屏蔽层内半径Rsin=60mm,被测管道直径为70mm。

对于这一传感器结构,需要补偿的就是检测层的8个检测线圈特性的一致性。但检测线圈的特性会受到线圈几何尺寸、安装角度、前端检测电路特性不一致的影响,而且线圈检测的信号是交变的磁场信号,其相位随激励方向的变化而改变,这些因素给检测线圈特性的补偿带来了困难。

2 检测线圈特性不对称的补偿

实现检测线圈特性不对称补偿的难点是检测信号是频率为187.5kHz的交流信号,而且各检测线圈输出的检测信号与激励基准信号之间有不同的相位差,这个相差会随检测角度的改变而变化。为此作者设计了一种补偿方法,其思路是使每个检测线圈在全部激励旋转方向下测量同一被测场,计算综合测量值并将其作为补偿系数,而补偿过程的实现则通过计算机控制激励场的旋转并对边界磁场进行连续检测来完成。在EMT系统进行图像重建时,首先选择空场作为检测线圈特性检测的参照场,来进行检测线圈特性测量;然后由公式计算出各检测线圈的补偿因子。采集进行图像重建的物场信号时,应用计算得到的补偿因子对测量数据进行修正。

对任意一个检测线圈检测补偿数据时,应分别测量其在所有激励场投影方向下的检测值。检测值包括通过解调电路得到的实部和虚部数据,所有激励方向下的检测值一起构成计算检测线圈特性补偿因子的参考矩阵。对于N个检测线圈,P个激励磁场旋转方向的EMT系统激励场需要旋转P次来获得全部N个检测线圈的补偿值,所以补偿参考矩阵由N行P列构成,其中每个元素都是检测线圈检测值的复数表示形式。本文介绍的EMT传感器系统中,N=8,P=16。

对于N个检测线圈,定义其特性补偿因子为K(i),其中i=1,2,......N,表示检测线圈序号。K(i)可按照如下公式计算:

EMT系统边界磁场检测线圈的动态补偿及图像重建

[1] [2] 下一页

下页更精彩:1 2 3 4 下一页