您现在的位置: 范文先生网 >> 理工论文 >> 电子通信论文 >> 正文

移相桥滞后桥臂实现零电压开关的方法综述

时间:2007-1-20栏目:电子通信论文

摘要:介绍了移相桥滞后桥实现零电压开关的困难,以及近几年来出现的几种解决方法,重点分析了它们的工作原理,比较了它们的优缺点。

    关键词:零电压全桥变换器;超前桥臂;滞后桥臂;谐振网络

引言

全桥变换器(Full-bridge Converter)通常应用于功率大于400W的开关电源中,特别是在大功率的通信电源中应用比较广泛。但是,硬开关条件下的全桥变换器会带来很大的开关损耗,不利于开关频率和电源转换效率的提高。针对硬开关损耗大的问题,有人提出了移相控制方法。通过移相控制可以实现开关管的零电压开通和关断,从而大大改善了开关管的开通与关断条件,这样便可以提高开关的频率,减少电源的体积,提高电源的转换效率。

1 概述

移相全桥变换器如图1所示。要实现开关管的零电压开通,必须要有足够的能量用来抽走将要开通的开关管的结电容(或外部附加电容)上的电荷;并给同一桥臂要关断的开关管的结电容(或外部附加电容)充电;同时,考虑到变压器的原边绕组的寄生电容,还要抽走变压器原边绕组寄生电容上的电荷。

图1 传统零电压开关的移相全桥电路

    由于超前桥臂在开关过程中有输出电流的参与,因此,很容易实现ZVS。而滞后桥臂在开关过程中,变压器原边是短路的,此时整个变换器就被分成两部分,一部分是原边电流逐渐改变流通方向,其流通路径由逆变桥提供;另一部分是负载电流由整流桥提供续流回路。负载侧与变压器原边没有关系。此时用来实现ZVS的能量只是谐振电感(漏感和附加谐振电感)中的能量。而谐振电感很小,因此,滞后桥臂开关管实现零电压开通比较困难。

2 非拓扑结构性改变的解决方法

从上面的分析可知,滞后桥臂的开关动作发生在回流过程向能量传送过程的转化阶段,由于输出电感电流不能反馈到原边,使滞后桥臂的开关管并联电容只能依靠变压器原边的谐振电感进行充放电,而谐振电感中存储的能量很小,使得滞后桥臂开关管实现零电压开通变得很难,特别是在低负载的时候更为明显。要实现滞后桥臂的ZVS,必须满足LrI22>ClagVin2+CtrVin2,要满足它就必须增加谐振电感Lr和增加电流I2。这样,就有两种非拓扑结构性改变的方法[1]可以解决滞后桥臂开关管零电压开通难的问题:增加励磁电流和增加谐振电感。但是,增加励磁电流会增加变压器的损耗,增加谐振电感又将引起副边占空比的丢失。为了更容易实现滞后桥臂的开关管零电压开通,达到既不增加开通损耗,又减少占空比丢失的目的,近来一些新的拓扑结构被提出。

图2

3 滞后桥臂并联谐振网络的零电压开关移相全桥变换器

为了克服滞后桥臂实现零电压开关难的问题,同时又不会引起占空比的丢失和开通损耗的增大,文献[2]提出了一种在滞后桥臂并联一个谐振电感和两个谐振开关的拓扑结构,如图2所示。开关的控制策略如图3所示。本拓扑在半个周期内有6个工作模态。

模态1S1及S2同时导通,滤波电感电流线性增加。

模态2S1关断,原边电流抽取S3并联电容C3上的电荷,同时对S1并联电容充电,在充放电完毕,D3导通。由于输出电路电感很大,因此,流过滤波电感上的电流可以看作为一个恒流源。

模态3在D3导通后,就可以零电压开通S3。此时,变压器原边电压变为零,副边电压也同时变为零,4个整流二极管同时导通,以维持输出滤波电感电流。

图3 

    模态4关断S2,利用存储在漏感上的能量抽取C4上的电荷,并给C2充电,当漏感很小,存储在漏感中的能量不足以抽取C4上的电荷,并给C2充电时,D4就不会导通,那么S4就不能实现零电压开通。为了使S4实现零电压开通,在关断S2前先开通Sa来建立谐振电流。

模态5当谐振电流建立到足够大时,同时关断S2及Sa,这样有谐振电感和漏感上的能量一同提供充放电所需的能量,使得S4实现零电压开通。

图4

模态6当D4导通,就可以在零电压条件下开通S4,输出电流反馈到原边流过S3及S4。在谐振电感上的能量经过S4和Db回馈到电源。

[1] [2] [3] 下一页

下页更精彩:1 2 3 4 下一页