现在位置:范文先生网>教案大全>数学教案>五年级数学教案>五年级数学《解决问题的策略》教案

五年级数学《解决问题的策略》教案

时间:2024-10-16 12:28:03 晶敏 五年级数学教案 我要投稿

五年级数学《解决问题的策略》教案(通用17篇)

  作为一位优秀的人民教师,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。怎样写教案才更能起到其作用呢?以下是小编精心整理的五年级数学《解决问题的策略》教案,希望能够帮助到大家。

五年级数学《解决问题的策略》教案(通用17篇)

  五年级数学《解决问题的策略》教案 1

  教学内容:

  苏教版义务教育课程标准实验教科书小学数学第九册第88~89页的例1、例2和“练一练”,练习十六的第1、3、7题

  教学目标:

  1、通过具体的情境使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,增强解决问题的策略意识,积累解决问题的经验。

  教学重点:

  学会运用倒推的策略解决问题。

  教学难点:

  通过具体的情境让学生体会倒过来推想的思考过程。

  教学过程:

  一、提出问题、揭示课题。

  1、结合情境,出示条件

  (多媒体出示甲、乙两个水杯)

  师:我们先来看大屏幕,请同学们仔细观察,(停顿片刻)你发现了什么?

  生:甲杯比乙杯果汁多一些

  师:还有呢?

  生:它们两个杯子一共有果汁400毫升(配合大屏幕)

  师:现在老师将甲杯中的果汁倒40毫升给乙杯,(大屏幕出示箭头图)

  师:这时你又发现了什么?(大屏幕闪烁40毫升果汁,然后平移至乙杯)

  生:现在两杯果汁同样多。(大屏幕出示“现在两杯果汁同样多”文字)

  2、根据条件,提出问题

  师:根据刚才的操作,你能提出什么问题呢?

  生1:现在两个杯子里各有多少果汁?(板书:现在)

  师:这个问题提得真好!谁能说说现在甲、乙两个杯子里各有多少果汁?

  生:甲、乙两个杯子现在都有200毫升果汁。

  师:为什么?

  师:你还能提出什么问题吗?

  生2:原来两个杯子分别有多少果汁?

  (板书:原来)(大屏幕出示问题“原来两杯果汁各有多少毫升?”)

  3、根据问题,揭示课题

  师:怎样从现在杯子里果汁倒推到原来杯子里果汁的情况呢?今天老师就和大家一起来研究解决这类问题的'策略。(板书课题:“解决问题的策略”)

  二、操作演示、寻找策略

  1、直观演示,感受倒推

  师:刚才我们已经算出现在每个杯子里有果汁多少毫升?(200毫升)

  (大屏幕显示由“实物”一个一个移动变成“平面图形”:两个杯子都是200毫升,并标明数据)

  师:那原来每个杯子里各有多少呢?(启发)我们不防再倒回去看一看。

  (多媒体演示)

  师:我们将倒给乙杯的40毫升还倒回甲杯,说明乙杯原来比200毫升多还是少呢?

  生:少了。

  师:只有多少毫升呢?

  生:160毫升。

  师:而把乙杯中的40毫升果汁还倒回甲杯后,这说明甲杯原来是什么情况呢?

  生:比200毫升多。

  师:甲杯原来有多少毫升呢?

  生:240毫升。

  师:谁再来完整地说说原来两个杯子分别有多少果汁?

  2、整理表格,抽象概括

  师:下面我们把整个解决问题的过程来整理一下。

  启发:甲杯是倒给了乙杯40毫升后还剩200毫升,所以甲杯原来有240毫升。乙杯是甲杯倒入40毫升后变成200毫升,所以乙杯原来有160毫升。(教师将表格填写完成)

  3、完善课题

  师:在解决刚才这个问题的过程中,我们运用了哪些策略呢?(列表、画图等等)

  师:根据现在的去求原来的我们又是采用了什么样的策略呢?能取个名字吗?

  生:我们是倒回去再想一想的。

  师:我们将类似与这样的倒回去再想一想的解决问题的策略称为:倒过来推想。(板书:--“倒过来推想”)

  三、教学例2,应用策略

  1、出示例二,提取信息

  例2:小明原来有一些邮票,今年又收集了24张。送给小军30张后,还剩52张。小明原来有多少张邮票?

  师:问题的信息比较多,谁能将这些信息依次说一说呢?

  2、整理条件,箭头图表示

  师:小明原来有多少邮票?后来他的邮票数发生了怎样的变化?

  (根据学生回答依次板书箭头图:

  原来?张又收集了24张送给小军30张还剩52张)

  3、分析题目特点,明确策略

  师:大家觉得这道题目的特点是什么呢?我们已经知道了什么?要求什么?

  生:知道了现在的,要求原来的。

  师:知道了现在邮票的张数,要求原来的应该怎么想呢?

  生:倒过来推想。

  4、同桌讨论,提倡算法多样化

  师:好!现在就请同学们按照同桌两人一组讨论讨论,相互说说这个问题可以怎么思考,再用算式表示出来。(同桌讨论、教师了解讨论情况,适当指导,喊两名算法不一样的同学板书算式,)

  第一种方法:52+30-24第二种方法:52+(30-24)

  =82-24=52+6

  =58(张)=58(张)

  师:请你们分别说说你这样列式计算的理由吗?

  生1:用52加30表示小明送给小军30张前的邮票数,再减去24表示小明在收集了24张前的邮票数,也就是他原来邮票的张数。

  (教师板书倒过来想的过程:

  原来有58张去掉收集的24张拿回送出的30张现在有52张)

  生2:根据题目小明今年收集了24张。然后送给小军30张,可以知道实际上小明现在比原来少了6张,所以用52+6=58。

  5、验证反思

  师:刚才两名同学分别说出了自己的想法,老师觉得都很有道理,他们的答案是否正确呢?我们也可以顺着题目的意思来验证一下。(师生共同推算从原来到现在的邮票数)

  师引导反思:现在我们再来看一看,在解决这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?(让学生自己说说感受)

  四、分层练习

  1、基础练习并比较(多媒体出示)

  (1)一辆公共汽车从起点站出发时,车上坐了26名乘客,中途停车时,下了16位乘客,同时又有24名乘客上车,请问现在车上有多少名乘客?

  (2)一辆公共汽车从起点站出发,有乘客若干名,中途停车时,下了16位乘客,同时又有24名乘客上车,现在车上有34名乘客,这辆公共汽车从起点站出发时,有多少名乘客?

  师:能解决这个问题吗?请学生们独立思考,同桌相互说一说?

  师:现在请同学们再回过头来看看,你觉得两个问题有什么区别?

  生:一个是知道原来坐车的人数,要求现在坐车的人数,一个是知道现在坐车的人数,要求原来的。

  师:那么我们在思考时又有什么不同的地方呢?

  生:知道原来要求现在的,我们就顺着想,如果知道现在要求原来的,我们就倒过来推想。

  2、分组练习巩固

  (1)小军收集了一些画片,他拿出画片的一半还多1张送小明,自己还剩25张。小军原来有多少张画片?

  (2)东东和芳芳原来共有60张画片,冬冬给了芳芳5张画片后,两人的画片同样多。原来两人各有多少张画片?

  (学生分组完成,指名板书,集体交流)

  师总结:像这样的知道现在要求原来的,我们倒过来推想比较方便。

  3、拓展提高

  小华去参观动物园,先从大门向北走2格道熊猫馆,再向西北走1格到百鸟园,再向东走4格到猴山,最后向南走2格到蛇馆。你能在图中标出其他几个景点和大门的位置吗?

  五年级数学《解决问题的策略》教案 2

  [教学内容]

  教科书第88~89页例1、例2和“练一练”,练习十六第1、2题。

  [教学目标]

  1.使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

  2.使学生在对自己解决实际问题过程的不断反思中,感受“倒推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力,发展数学应用意识。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  [教学重、难点]

  重点:学会运用“倒推”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  难点:在正确运用策略的过程中感受“倒推”的策略对于解决特定问题的价值。

  [教学准备]

  多媒体课件

  [教学过程]

  一、创设情境,引出问题

  师:同学们,看老师这儿有两杯果汁(媒体出示两杯果汁),一共有400毫升,给两位同学喝,你觉得公平吗?要怎样才公平呢?(生:从甲杯倒一些给乙杯) 现在从甲杯倒入乙杯····(媒体演示甲杯倒入一些乙杯,直至两杯同样多)。问:现在两杯果汁——(学生齐答:两杯果汁同样多)。

  追问:现在每杯是多少毫升呢?你是怎么算的?

  (根据学生的回答,相机板书出:400÷2=200毫升 )

  二、自主探究,感悟策略

  1. 初步感知,一次变化还原。

  (1)引导探究,理清思路。

  师:那原来这两杯果汁各有多少毫升?(出示问题)我们可以怎样想?

  学生独立思考后,同桌说一说。

  组织全班交流,说说怎样想的,老师同时引导学生澄清思路,并借助媒体进行直观演示:乙杯倒回甲杯40毫升。

  师:现在乙杯剩下——(生齐答:160毫升),为什么?怎么算的?板书出。

  续问:甲杯呢?(生齐答:240毫升)为什么?怎么算?板书出。

  (2)填表整理,加深体验。

  师:你能把刚才的想法填在表格里吗?

  学生独立填写后,组织交流,让学生说出:甲杯为什么是200+40呢?乙杯为什么是200-40呢?

  (3)回顾小结,得出策略。

  师:同学们,刚才我们在解决原来两杯各有多少毫升这两个问题时,你们是怎么想的?

  学生讨论、交流,全班交流时,抽象概括(师随机出示课题:解决问题的策略——倒推)。

  2. 应用深化,多步变化还原。

  (1)出示情境,整理信息。

  出示例2:小明原来有一些邮票,今年又收集了24张。送给小军30张,还剩52张。小明原来有多少张邮票?

  学生读题、审题后,问:用什么方法可以将题目的意思更清楚地表示出来?

  学生讨论后,得出:可以用摘录条件的方法进行整理。

  放手让学生尝试整理,然后,抽样展示,组织交流,并借助媒体出示箭头图:

  原来?张→ 又收集了24张→ 送给小军30张→ 还剩52张

  (2)自主探究,理清思路。

  师:根据这些信息,你准备用什么策略来解决这个问题?

  学生独立思考、同桌交流后,说出:可以用“倒过来想的方法”。

  师:你能依照上图的样子,表示出“倒推”的过程吗?

  学生尝试画出“倒推”的示意图。组织交流时,媒体出示下图:

  原来?张 去掉收集的24张 跟小军要回30张 还剩52张

  (3)深化思路,列式解答。

  师:根据上面的箭头图,你能列式解答吗?

  学生独立列式解答,抽样展示出学生的算法,组织交流,并让学生说出每一步表示的意思。

  (4)检验对比,体会策略。

  组织学生进行检验。

  比较检验的思路和解决问题的思路。

  师:这和我们解决问题的想法有什么不同呢?

  (5)引导反思,深化策略。

  师:解决上面的问题时,是怎样运用“倒过程推想”的.策略的?你认为适合用“倒推”的策略来解决的问题有什么特点?

  学生讨论、交流后,达成共识。

  三、联系实际,解决问题

  1.在一次向灾区学校的援助活动中,李清同学把自己收藏图书的一半还多3本捐给了灾区的学校,自己还剩27本。他原来有多少本图书?

  学生读题、审题后,问:“收藏图书的一半”表示什么意思?

  学生理解之后,在作业纸上解答。全班交流,说说解决问题的方法。

  2.填一填:学生口答。

  师:仔细观察这两道题,你发现了什么?

  3.想一想:媒体出示:白果、栗子和柿子图片.

  学生观察图,交流从图中获取到的信息(媒体出示相关信息):

  5粒白果的重量=2粒栗子的重量,8粒栗子的重量=1个柿子的重量,1个柿子的重量=80克。

  学生独立在作业纸上完成后,全班交流。

  4.画一画:学生明确题意后,独立完成。

  全班交流,说说怎样想的。

  四、课堂总结

  师:同学们,刚才我们解决了这么多问题,有没有发现都是用了哪一种策略?在运用“倒推”的策略来解决问题时,可以用什么样的方法整理信息?

  五、课外拓展

  今天我们研究的这类问题,其实在古代早就有人研究了。我国唐代的天文学家、数学家张遂曾以“李白喝酒”为题材编了一道算题:李白街上走,提壶去买酒。遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?请大家课后去研究。

  五年级数学《解决问题的策略》教案 3

  教学内容:

  五年级(上)第63~64页的例1、例2和随后的“练一练”,练习十一的第1~3题。

  教学目标:

  1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。

  2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

  3、增强解决问题的策略意识,提高解决问题的实际能力。

  教学重点:

  能对信息进行分析,用“一一列举”的策略解决实际问题。

  教学难点:

  能有条理的一一列举,发展思维的条理性和严密性。

  教学准备:

  课件、小棒、表格、扑克牌。

  教学过程:

  一、导入课题。

  今天庞老师和你们是初次见面,给你们带来了一份见面礼,想看吗?好,我们一起来看一部短片。(课件播放:猜猜职业。)刚才的短片中一共提到的了几个不同的职业?有人说5个,有人说4个,看来意见还不统一。回忆一下,具体是哪些职业呢?刚才同学们将这些职业一个一个列举了出来(板书:一一列举),庞老师的问题也就迎刃而解了,其实啊,“一一列举”也是我们解决数学问题时经常要用到的一种方法。

  好,上课铃声已经响起,上课!今天我们一起来学习“解决问题的策略”(板书课题)。

  二、新课教学

  (1)、情景创设,呈现问题。

  老师家东面有一块空地,我想请工人师傅用18根1米长的栅栏围成一个长方形的花圃。(课件出示:用18根1米长的栅栏围成一个长方形的花圃。)

  你从这句话中知道了什么数学信息?你是怎么知道周长是18米的?真了不起,你连这隐藏的数学信息也找出来了,周长是18米,那么说明长和宽怎么样?真是说到庞老师心里去了。(课件出示:友情提醒:花圃的长和宽长度之和为9米。)

  想一想:怎样围面积最大?(课件出示:思考:怎样围面积最大?)工人师傅可犯难了,该怎么围呢?同学们,怎么帮工人师傅解决这个问题呢?自己想一想。把你的解决办法在小组里交流一下。

  指名交流。

  那长和宽可能是多少呢?有没有本领一个不落的都“一一列举”出来?这么自信啊,那就请同学们将这些围法记录在草稿本上,有困难的同学可以借助小棒围一围,或者想其他的办法解决。庞老师还给同学们提供了一张表格,你也可以将这些围法记录在这张表格中。

  设计意图:策略的形成首先源于什么样的数学问题,而什么样的数学问题又影响着什么样的解决策略。教材中原本设计的问题是“王大叔用18根一米长的栅栏围一个长方形羊圈,有多少种不同的围法?”,我将它改为“用18根一米长的栅栏围一个长方形花圃,怎样围面积最大?”一来更联系实际生活,花圃是学生在现实生活中随处可见的.,而且后者的提法更富有探究价值,更具有开放性。策略的形成源于问题的挑战性,学生的学习兴趣盎然,思路才放得开。

  (实物投影展示同学填写的:选择文字记录和表格记录的,表格再选择有序和无序的,下面增设面积一栏的。)这两位同学都找到了这四种围法,你们认为哪种填法比较好?为什么?

  有条理地一一列举(板书:有条理)可以帮助我们快速有效地找出所有的围法。为什么还增设长方形的面积这一栏?现在你知道哪种围法围出的长方形面积最大吗?你是怎么知道的?((课件出示:面积计算结果)请同学们再次观察这张表格,你们有什么新的发现?在小组里交流一下。

  学生交流。

  想一想,在周长不变的前提下,这些长方形分别是什么样的?当长方形的长和宽的数据相差越大时,围成的长方形就越扁,它的面积就越小;反之,长方形的长和宽数据越接近,这个长方形就越接近正方形,面积就越大。

  设计意图:学生通过列表解决了问题,进一步引导形式学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?你有什么感悟?”这样数形结合,进一步激发了学生探究的心理冲突和不满足的欲望,为形成富有理性的数学思考积累了经验。

  回忆一下,我们采用了什么策略解决这道题?通过有条理地一一列举可以将答案展示的更清楚、更全面,分析问题更直观,下面我们继续用“一一列举”的策略来解决问题。

  (2)循序渐进,深入问题

  花圃围好后老师去购买花苗,有三种花苗可供选择:(课件出示图片)兰花、蝴蝶花、月季花。庞老师最少买()种花苗,最多买()种花苗。(课件出示:最少买()种花苗,最多买()种花苗。)(学生回答后课件补充完整)

  (课件出示:思考:老师一共有多少种不同的购花方案?)

  你打算用什么策略解决这个问题?列举时,打算先考虑购买几种的情况?接下去又要怎样思考呢?请同学们分小组讨论,看哪组能通过列举得到正确的答案,并用自己喜欢的方式做好记录,愿意用表格记录的可以填在庞老师提供的表格中。

  (学生交流,具体介绍是怎么列举的,同步展示表格的填充。)

  购花方案

  只买1种

  买2种

  买3种

  兰花

  蝴蝶花

  月季花

  通过列表可以将一一列举的结过展示的一目了然,我们一眼能看出是否有重复有遗漏,这是一种科学有效的整理方法。

  设计意图:例二的教学着重抓三个环节。第一、要帮助学生准确的理解题意。第二、要指导学生有条理地分别考虑只买1种、2种、3种各有几种具体的订阅方法。第三,通过列表画“√”的方法展现学生“一一列举”的思考过程。但考虑到这一部分难度较大,绝大多数同学连这一张表格的意思都看不懂,所以采取了“由点到面”的策略,有能力的同学先完成,然后让他们讲解这张表格是怎么设计的怎样填写的,更好的帮助学生理解这种策略如何在表格中展现。

  你认为要得到全部答案,列举时要注意什么?指出:要得到全部答案,列举时要有条理,这样才能“既不重复,也不遗漏。”(板书:不重复不遗漏)

  三、应用巩固。

  1、现在我们来放松一下好不好。老师这里有一张靶纸,分内、中、外三圈,里面的10、8、6谁知道是什么意思?谁愿意来投投靶。(学生投靶)每人投两次。庞老师也打算来试一试,如果老师投中两次,有多少种不同的情况?(课件:投中两次,有多少种不同的情况?)请在草稿本上列举出所有可能的答案。(课件:投了两次,有多少种不同的情况?)这两个问题含义一样吗?那可能得到多少环?

  设计意图:由于本节课的内容思维强度教大,学生可能会产生疲劳的感受,因此本环节安排一个掷飞镖游戏使学生放松,既可以帮助学生理解题意,又很自然地引出题目。通过两个问题的一字之差的比较,提醒了学生要看清题目。

  2、下面我们继续解决生活中的一些问题。听,这个问题和什么有关?(播放钟声)(出现闹钟图片)

  有一个音乐钟,每隔一段相等的时间就发出铃声。已经知道上午9:00、9:40、10:20和11:00发出铃声,那么下面哪些时刻也会发出铃声?

  13:00  14:40  15:40  16:00

  思考一下,你打算用什么策略解决这个问题?动笔写一写。然后在小组里交流一下。

  指名交流。询问间隔40分钟是怎么知道的?

  3、一副扑克牌有四种花色,从中任意抽出一张或两张牌,那么有多少种不同的选择方法?

  学生实际操作四张牌,用自己喜欢的方式记录。

  学生交流。

  四、全课总结

  通过这节课的学习,我们又认识了一种新的解决问题的策略“一一列举”,随着你们知识的增长,将来一定会发现更多、更妙的解决问题的策略。

  五、课堂作业

  用48个1平方厘米的正方形拼成长方形,有多少种不同的拼法?它们的周长各是多少?

  长/厘米

  宽/厘米

  周长/厘米

  五年级数学《解决问题的策略》教案 4

  教材分析:

  1.课标中例1通过解答一个与长方形周长计算有关的实际问题,让学生初步感知一一列举的策略在解决问题过程中的作用。初步掌握运用一一列举的策略解决问题的基本思考过程和方法。在此之前学生已经学习过用列表和画图的策略决问题,对解决问题策略的价值已有了一些具体的体验和认识。通过这部分内容的学习,一面可以使学生进一步加深对现实问题增强分析问题贩条理性和严密性。

  2.本节结合场景图提出问题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?这场景图既有助于学生准确地理解题意,又有助于学生从数学的角度展开对问题的分析和思考。

  学情分析:

  1.让学生通过观察、分析、独立思考、动手摆小棒的操作、合作交流等方式进行学习,学生学得轻松愉快,而且学习效果好。

  2.解决本例题的问题关键有三个:第一,要认识到18根1米的栅栏的总长度就是围成的长方形的周长;第二,用18根1米长的栅栏围成长方形,其围法应该是多样的;第三,要知道一共有多少种不同的围法,就需要把符合要求的长宽一一列举出来,这就是学生认知障碍点,在这方面学生学得有点困难,所以教材先引导学生用小棒摆一摆。

  3.通过摆小棒的操作,一方面可以使学生进一步明确围成的长方形的周长与它的长和宽的关系;另一方面也能使学生实实在在地感受到:要找出所有不同的围法,需要有条理地一一列举,再列表填一填。

  教学目标:

  1、 使学生经历用一一列举的策略解决简单实际问题的过程,能通过有条理的列举分析有关实际问题的数量关系,并获得问题的答案。

  2、 使学生在对解决简单实际问题过程的反思和交流中,感受一一列举策略的特点和价值,进一步发展思维的条理性和严密性。

  3、 在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

  教学重点和难点:

  重点:让学生体会策略的价值,并使学生能主动运用策略解决问题。

  难点:在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

  教学环节:

  一、创设情境、探索策略

  1.预设学生行为

  提出不同的问题,活跃学生的思维。同学们能积极讨论融入到火热的课堂中。

  学生热情地投入各自的操作,组织展示、交流。

  学生回答不只,有很多种,使学生更进一步去探问题。

  学生很积极地说相信我们能。

  学生积极地参与活动中。

  学生回答:能!

  学生积极融入学习中。每个小组把活动中不同的围法有条理地画在黑板上。

  学生独立完成!积极回答老师提出的问题。

  积极,认真投入作业中去!

  2.设计意图

  激发学生的学习兴趣,调动学生的学习极性。培养学生独立思考的能力。

  积极地想展示自己的能力。体会成功的乐趣,培养学生的学习兴趣。

  培养学生勇于挑战的精神。

  培养学生的互相合作的精神。

  培养学生多动脑动手能力。

  能举一反三列举规律,解决生活中的实际问题。

  培养学生善于严准学习的'习惯。使学生体会不重复,不遗漏的重要性。

  能独立完成作业,加深应用能力!

  二、动手操作验证策略

  1、出示例题及其场景图,指名读题。

  2、提问:你们能根据题意,用18根同样长的小棒先围成一个长方形吗?

  启发:用18根同样长的小棒是不是只能围成一种长方形呢?那有多少种呢?你们能不能有条理的操作把不同的围法都找出来吗?

  3、把学生分组活动,组织交流。

  谈话:同学们通过操作找到了这么多种不同的围法,真是了不起呀!但是否还会有其他的不同的围法呢?我们再作进一步的分析。

  三、联系实际,应用策略

  1、羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?

  2、从刚才解决问题的过程,能说说你们的体会吗?

  四、应用巩固

  你们能算出围成的每个长方形的面积,并比较它们的长、宽和面积吗?

  通过计算和比较你发现了什么?周长不变的前提下,面积有可能变化吗?什么情况下面积最大?什么情况下面积最小?

  五、课堂作业

  出示练一练和想想做做,让同学独立完成。做练习十一的第1~3题。

  五年级数学《解决问题的策略》教案 5

  教学目标

  1.通过创设问题情景,使学生在解决简单的实际问题的过程中,学会用“倒过来推想”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题步骤,从而有效地解决问题。

  2.通过动手实践、自主探索、合作交流等学习活动,使学生在不断反思的过程中,进一步发展分析、综合和简单推理的能力。

  3.通过对实际问题的探索,使学生进一步积累解决问题的经验,感受“倒过来推想”的策略对于解决特定问题的价值,获得解决问题的成功体验。

  重点难点

  重点是:体会适合用“倒过来推想”的策略来解决的问题的特点,学会用“倒过来推想”的.策略解决问题的思考方法,能正确合理地运用倒推法进行问题解决实际生活问题。

  难点是:根据具体的问题确定合理的解题步骤,从而有效地解决问题。

  教学准备

  实验用具(水杯),作业本,多媒体课件

  教 学过程

  教学环节

  过程目标

  教 师活动

  学 生活动

  教 学反思

  创设

  情境

  体会

  倒过

  来想

  通过创设情境使学生从简单的事情中理解倒过来思路.

  1.创设学生春游乘车情境

  出示从苏州去南京沿途经的城市,提问回苏州时沿途依次经过哪些城市

  明确日常生活中常常应用到“倒过来想”的策略。

  师生交流

  观察

  独立思考

  自主

  探索

  学会

  新策

  略

  借助学生感兴趣的实验操作和熟悉的收作业本情境来代替教材例2,使学生在亲历过的问题中受到启发,自主探索用画直观图的方法、引导学生有序思考,用“倒过来推想”的策略解决问题,在解决问题过程中体会适用新策略解决的问题特点。

  一.初步理解“倒过来推想”的方法

  1、出示两只盛有不等果汁的杯子,信息:两杯共装果汁400毫升,提出问题:怎样才能使两只杯中的果汁同样多?

  2、配合演示从甲杯倒入乙杯40毫升使两杯同样多。然后组织学生猜一猜原来两杯果汁各有多少毫升?

  3、引导学生有序思考:倒水前后两只杯子里果汁的总量有没有变化?

  4、组织学生说说解决这个问题的主要策略是怎么样的?从而揭示“倒过来推想”的策略。

  5、板书课题。

  二.体会适用新策略解决的问题特点

  1、创设学生交作业情境,出示一叠作业本,有关信息:如果又新收到12本,发下去25本,剩下总数是20本。

  2、呈现箭头图,帮助学生理顺数量变化方向。

  3、提问:你准备用什么策略来解决这个问题?呈现学生的列式计算方法。

  4、联系倒推的两步过程启发学生思考总体变化来思考。

  5、引导学生检验,用顺推的方法看剩下的是否为20本,使学生体会到用“倒过来推想”的策略解决问题是一种有效的方法和策略。

  观察思考

  学生交流

  说说自己的想法。

  尝试用画直观图和填表格的方法来更清楚展示数量关系的变化情况

  推理解答,说说倒推计算思路

  估测一下本数

  尝试用自己方法信息,并展示出来。

  说说“倒过来推想”策略

  思考“发下去25本”倒过来想要怎样?“新收到12本”倒过来想要怎样?

  列式

  顺推检验

  生活中有许多可以应用倒过去推想思路的实际问题,要引导学生从实际情况中去理解倒过去推想的思路.

  实践

  应用

  体会

  价值

  通过对实际问题的探索,使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。帮助学生进一步掌握本课知识,形成技能,并调动他们的学习乐趣

  1、组织完成练习十六的第1题

  组织学生和同桌交流自己的表达方式和思路

  投影学生作业过程,请学生介绍自己的方法。

  2、组织完成练习十六的第2题

  组织学生组内交流自己的表达方式和思路

  投影学生作业

  3、组织完成独立完成练一练。

  提问学生思考怎么理解小军拿出画片的一半还多一张送给小明?如果你是小军你会怎么做?

  出示10支粉笔,提问拿出粉笔的一半还多一支可以怎么拿?以此帮助学生理解关键句含义,明确可以分成两步理解

  独立完成

  仿照例1用列表方法

  独立完成

  仿照例2用箭头表达数量变化方向

  介绍自己的方法。

  理解先拿出一半,然后再拿一支。

  五年级数学《解决问题的策略》教案 6

  教学目标:

  1、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。

  2、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

  3、增强解决问题的策略意识,提高解决问题的实际能力。

  教学重点:

  能对信息进行用“一一列举”的策略解决实际问题。

  教学难点:

  能有条理的一一列举,并进行分析

  教学准备:

  课件、小棒、表格、

  一、谈话导入

  课前谈话:有谁听说田忌赛马的故事,你能简单的给大家叙述一下?

  谈话:同学们,在四年级我们已经接触过解决问题的策略,还记得“策略”是什么意思吗?(指名答:方法、谋略)那么你们还记得我们曾经学过哪些解决问题的策略吗?(画图,列表)

  引入课题:今天我们就继续来学习解决问题的策略(板上课题)

  二、自主探究,运用列举

  (一)创设情景,引出问题

  (1)创设情景:

  看,这是哪里?下面我们就一起走进东山公园:

  现在公园里工人师傅用18根1米长的栅栏围成一个长方形花圃的景点。供游客们休闲和拍照。那有多少种不同的围法?

  师:从题目中你获得了哪些数学信息?

  生:用18根1米长的栅栏围成一个长方形花圃。(18根1米长的.栅栏围成的长方形周长就是18米。)

  (2)动手操作:

  师:愿意帮助工人叔叔吗?下面就以小组为单位拿出你们手上的牙签,每根牙签代替一根1米长的栅栏,动手来围围看。(同桌合作摆牙签,教师巡视摆一摆),写出你摆的长方形长和宽分别是多少?谁先摆好谁就站起来给大家展示一下。

  ①汇报交流:

  生1:长8,宽1米。

  生2:长5,宽4米。

  ……

  一一展示学生得围法

  师:刚才同学们利用小棒围一围列举出了各种围法,但运用摆小棒寻求答案感觉怎样?

  生1:用小棒摆有点烦。

  生2:很乱,答案可能有重复和遗漏

  师:有没有办法有序的、很快一个不落的将所有的围法都找出来?你们准备怎么做?

  生1:有顺序的一一列举出

  师:边板书边一起列举?这种方法我们把它叫做文字列举。板书文字列举

  除了以上几种情况,还有不同意见吗?你们是怎么想的?

  生1:18根1米长的栅栏围成的长方形周长就是18米。所以长和宽的和只要是9米。

  师:真不错,那除了用文字列举的方法之外,还有不同的方法吗?

  生1:列表列举

  师:板书列表列举

  拿出课前准备的表(教材P63)

  长方形的长/分米

  长方形的宽/分米

  长方形的面积/平方分米

  学生完成作业纸

  小结师:对于这类问题的解决我们可以用文字列举法,也可以用列表整理的方法,用这两种一一列举的方法能够有序、一个不落的把各种情况找出来。

  师板书:有序、不重复

  ( 3)观察发现

  师:现在我们已经找到4种不同的围法,因为现在围的是长方形花圃,供游客们休闲和拍照。如果你是工人师傅你会选择那种围法?

  生:第4种(长5宽4)

  师:为什么?

  生:因为第4种围法围成的长方形最大,可以供更多游客拍照。

  师:是吗?请同学们口算出各个长方形的面积,再检验一下是不是第4种(长5宽4)面积最大。

  师:仔细观察表格中的长、宽、面积,你发现了什么?小组讨论一下?

  教师小结:在周长不变的前提下,当长方形的长和宽的差越大,面积就越小;长方形的长和宽数据越接近,面积就越大。

  所以你们的选择是有道理的。

  五年级数学《解决问题的策略》教案 7

  教学内容:

  苏教版三年级上册《解决问题的策略》第71—73页。

  教学目标:

  1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。

  2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学准备:

  多媒体课件、相关板贴

  教学过程:

  课前交流:

  有9个小朋友要过一条河,河边只有一条小船(船上没有船夫),船上每次只能坐5个人,小船至少要运几次,才能使9人全部过河?

  你们能想到好办法帮助他们过河吗?

  一、导入新课

  刚才同学们用我们所学的知识解决生活问题,其实解决数学问题也需要策略。(出示课题)今天我们来学习解决问题的策略。

  二、导学探究

  (一)理解题意

  1、出示条件:“小猴帮妈妈摘桃,第一天摘了30个,第二天比第一天多摘5个。”

  从题目中你知道了哪些信息?数学上把已经知道的信息称为条件,有了这两个条件就可以提问题了。出示问题:第三天摘了多少个?

  学生口答。

  指出:老师刚设了个陷阱。根据这两个条件只能求出第二天摘的,不能求第三天摘多少个!

  2、如果我把其中一个条件改一下,(出示修改条件“以后每天都比前一天多摘5个”)现在可以算了吗?

  看来这条件挺神奇的?一起来看看。以后每天都比前一天多摘5个,什么意思?

  预设1:第二天比第一天多摘5个,第三天比第二天多摘5个……

  同学们看,这个条件看上去很简单,但他却能从中找到这么多的隐含条件,并把它有序的表达出来。厉害!谁能像他这样有序的说一说?

  指名说,结合多媒体出示:第二天比第一天多摘5个……第五天比第四天多摘5个。

  追问:还能往下说吗?(出示:第六天比第五天……)还能再往下说吗?太多了,这么多条件可以用一句话来概括,一起说(多媒体变换,所有内容整合为“以后每天都比前一天多摘5个”)。

  过渡:同学们真会思考。这句话还可以从不同的角度思考吗?

  引导出示:第一天摘的+5=第二天摘的,(课件出示)你们能明白他的意思吗?老师明白了,他是倒过来想的,比前一天多摘5个就是后一天摘的,看得懂吗?谁能继续往下说。(结合回答,出示第二天摘的+5=第三天摘的……)

  这么多条件其实也是一个意思,(所有条件隐去,变换为“前一天摘的+5=后一天摘的”),一起读一读。

  预设2:

  (没人能说。)以后每天可以是第二天吗?如果是第二天,那就比第几天多摘5个?(手指着板贴),也就是说:第二天比第一天多摘5个。以后每天可以是第三天吗?如果是第三天,那——第三天比第二天多摘5个(板贴)

  预设3:

  (学生回答30+5。)

  30是第几天摘的?加5是想求什么?也就是说第一天摘的+5等于第二天摘的,(课件出示)你们能明白他的意思吗?

  过渡:同学们真会思考。(大屏上留下:以后每天都比前一天多摘5个)这句话还可以从不同的角度思考吗?(接预设1过渡前的话)

  小结:看似简单的一个条件,给大家一挖掘,竟然找到了这么多连续的隐含条件,这就是数学的魅力之处。

  (二)分析数量关系

  有了这么多的'条件,能解决我们的问题吗?你打算怎么解答?先思考,再跟同桌说说。

  (三)列式计算

  1、都有办法了吗?把你的想法写在自己的练习本上。

  (1)学生自练.

  (2)交流:

  展示1(列算式):你来说说是怎么想的。

  结合学生介绍,相机板书算式。35指的是什么?这个5呢?求的是?你们看,第一步的结果,作为第二步的条件参与运算,帮助我们求出了下一个问题。数学就是这样,在已知、未知之间不停地转换。问题解决了吗?齐答一下。

  展示2(出示表格):这个同学的方法,能看得懂吗?谁来说说。(生说)他列了个表格把每天摘的个数依次写了出来。这个方法怎么样?

  2、出示问题:第五天摘了多少个?

  (1)要求:不讨论,自己独立解决。先想想怎么做,想好了吗?拿出作业纸,第一题,可以填表,也可以列式计算,时间1分钟,开始。

  (2)学生完成计算,教师巡视。

  (3)展示交流。

  展示1:一起看大屏幕。他选择的是填表,看一看,填的对吗?

  展示2:他是列式解答的。第五天摘了50个,对吗?考考你们,求第四天摘的,用到了哪两个条件?根据第三天摘的,就能算出第四天摘的,有了第四天摘的,就能算出………

  展示3:(出示:5×4=20(个),20+30=50(个)

  预设①有个同学是这样做的,这个方法正确吗?5×4算的是什么呀?

  预设②老师是这样做的,你们觉得有道理吗?5×4算的是什么呀?

  第五天比第一天一共多20个,对吗?怎么想的?

  第一天暂时不看,以后每天都比前一天多一个5,到了第五天一共比第一天多了几个5?也就是20个。知道了这个多的20,再加上第一天的,就算出第五天摘的。方法怎么样?也不错吧?

  (四)反思总结

  1、归纳方法。

  刚才我们一共想到了3种方法(多媒体出示3种方法),其中有两种方法解题思路是一样的,你们发现了吗?他们都是怎样算的呢?

  小结:他们都是从第一天摘的这个条件想起,加上第二天比第一天多摘的,就算出第二天摘的。有了第二天的,再根据这个条件算出第三天摘的,就这样,依次算出第四天、第五天。同学们,像这样从条件想起,一步步计算求出问题的方法,是一种解决问题的策略(出示箭头)。

  再来看第三种方法,是根据这些条件发现第五天比第一天多摘了4个5,然后加上第一天的,就解决了问题。这种方法虽然思路不同,但也是从条件想起的策略。

  2、回顾感悟。

  同学们,我们一起解决了一道比较复杂的问题,让我们回顾一下解决问题的过程,都分了哪些步骤?

  ①生:我们要从条件想起。

  师:是啊,从条件想起是解决问题的一种策略。根据对应的条件确定先算什么,再算什么。这个步骤就叫做——分析数量关系。

  ②生:我知道可以填表做,也可以列式算。

  师:恩,这个步骤就是计算解答(板贴)。在解答问题时,方式可以多样,既可以填表,也可以列式。

  ③预设1:生:解决问题前要先找到条件。

  师:不仅要找到条件,还要找到——(问题),对于比较复杂的条件,还要弄清每个条件的含义。这个步骤就是(理解题意),它是其他步骤的基础。

  预设2:生:要找到条件和问题。

  师:对,首先要找出条件和问题,对于比较复杂的条件,还要弄清每个条件的含义。这个步骤就是(理解题意),它是其他步骤的基础。

  预设3:学生想不到看题。师:没有了?老是觉得有一个步骤也挺重要,就是理解题意(出示)。你们知道理解题意是什么意思吗?对,就是看清题目中的条件和问题,对于比较复杂的条件,还要弄清每个条件的含义。这个步骤是其他步骤的基础,可不能忘了。

  总结:要能很好地解决一个数学问题,至少得有理解题意,分析数量关系,计算解答这三个步骤。

  三、导练应用,增强认识

  看来同学们的收获还真不少。特别是掌握了从条件想起的策略,这是一个新本领。想用用这个本领吗?好,试一试。

  (一)“想想做做”第1题。

  1、第1小题。

  (1)出示第一幅图。这是一个天平,看出了什么条件?还有吗?也就是——(出示:4个苹果重400克)

  真不简单,从天平上发现了两个条件,能求什么问题?会解答吗?

  (2)出示第2幅图,仔细看,又看出了什么条件?那根据这两个条件,又能求出什么?

  (3)(出示两幅图)刚才,我们先根据4个苹果重400克求出了平均每个苹果重多少克;再根据橙子比苹果重20克求出了橙子的质量。这种解决问题的策略也是从条件想起。

  2、第2小题。(出示题目)有三个条件了。你能根据这些条件提出问题吗?

  (1)学生提问,相机出示问题。

  (2)你觉得哪个问题最简单?根据哪两个条件来解决?怎么算?(出示算式)钢笔支数求出来了,下面我们可以求出(圆珠笔的支数),怎么算?

  圆珠笔支数知道了,这个高难度的问题也可以解决了吧,谁来?

  (二)完成“想想做做”第2题。

  (1)老师拿出一个皮球,师生互动,感知球的多次下落与弹起。

  (2)出示题目,认识条件。“一个皮球从16米的高处落下,如果每次弹起的高度总是它下落高度的一半。”

  有2个条件,你觉得哪个比较复杂(学生说后,多媒体划下横线)

  “每次弹起的高度总是它下落高度的一半”,怎么理解?

  学生口答。

  结合图观察:如果这里是16米,第一次下落后弹起的高度大概在哪?谁来指一指?

  第二次弹起的高度大概在哪儿呢?

  (3)(出示问题:第三次……):理解了题意,你能自己分析数量关系,解决问题吗。拿出作业纸,完成第2题。

  交流汇报。第一次弹起?第二次呢?

  反思:看第三次弹起的高度是?如果没有前两次的结果,你能直接得到第三次的结果吗?那有了第三次的结果我们就能进一步推断出第四次弹起的高度是几米?数学就是这样一环套着一环往下延伸。

  四、自主实践,导悟提升

  1、完成“想想做做”第3题。

  (1)指名读题。

  (2)有谁会做这个题目吗?

  (3)(出示圆圈)一个圆圈表示1个小朋友,那18个圆圈就表示……?请同学们按照题目的要求,先找出芳芳和兵兵的位置,再解答。

  (3)谁来汇报一下。芳芳和兵兵之间有几个人?

  生:这是芳芳的位置?

  追问:你是怎么想的?芳芳的位置在哪儿,你是根据什么条件确定的?兵兵呢?

  (4)从条件想起,我们顺利的解决了问题。你认为画图对解决这个问题有帮助吗?

  指出:有时难以理解的问题,画画图就变得容易理解了。

  2、拓展延伸

  过渡:同学们都很棒,老师想送给大家一个礼物,想要吗?谁第一个解决我的问题,我就把这个礼物送给他。准备好了吗,我要出题了。开始!

  出示:妈妈买来3箱苹果,每箱5千克;又买来4箱梨子,共比苹果多40千克。梨子和苹果一共买了多少箱?

  组织交流。

  追问:这么多条件,为什么只用了两个条件?

  指出:解决一个问题也不一定都要从条件想起,有时从问题想起也很快捷,这得具体问题具体分析。

  五、全课总结

  今天,我们一起学习了解决问题的策略。你有什么收获吗?

  板书设计:

  条

  第一天摘了30个

  解决问题的策略件 第二天比第一天多摘5个第三天比第二天多摘5个第四天比第三天多摘5个第五天比第四天多摘5个…… 问 题 第三天摘了多少个? 第五天摘了多少个?

  五年级数学《解决问题的策略》教案 8

  教学内容

  教科书第88~89页的例1、例2和“练一练”,练习十六的第1、2题

  教学目标:

  1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

  教学过程:

  一、学习例1

  1.呈现问题。

  (1)出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

  提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

  (2)学生回答上述问题后进行实际的操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

  (3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

  2.解决问题。

  (1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

  (2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

  (3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)学生画图后,组织展示、交流,并相机呈现教材的第二组示意图。

  3.填表回顾,加深对“倒过来推想”的体验。

  (I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的每个数据各是怎样推算出来的.。

  (2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

  二、学习例2

  1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

  2.在学生讨论后,指出:可以按题意摘录条件进行。出示下图:

  原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

  提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

  3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

  学生尝试画出倒推的示意图后,出示下图:

  原有?张←一一去掉24张←一一跟小军要回30张←一一还剩52张

  4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

  5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  三、应用巩固

  出示“练一练”,学生各自读题。

  四、课堂作业

  做练习十六的第1、2题。

  五年级数学《解决问题的策略》教案 9

  教学内容:

  教科书第88~89页的例1、例2和“练一练”,练习十六的相关习题

  教学目标:

  1、使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。

  2、使学生在对自己解决实际问题过程的不断反思中,感受“逆推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  学会用倒推的解题策略解决实际问题

  教学难点:

  根据具体问题确定合理的解题步骤

  教学准备:

  多媒体课件,练习纸。

  教学过程:

  一、激趣导入,初步建立倒推法的一般解题流程

  1、路线倒推

  师:前不久,学校组织大家去春游,还记得吗?

  生:记得

  师:游玩后一位同学写了这样的一篇数学日记。来,听一听。

  (录音:我们8点从学校出发,一路经过长江大桥、老山风景区,最后到达雏鹰军校。下午沿原路返回,你知道我们的返回路线吗?出示:学校→长江大桥→老山风景区→雏鹰军校)

  师:谁能回答?

  生:返回路线是从雏鹰军校出发,经过老山风景区、长江大桥,最后到学校。

  (出示:学校←长江大桥←老山风景区←雏鹰军校)

  师:原来你是倒过来想的。

  2、翻牌倒推

  师:下面老师玩一个小魔术,想不想看?

  生:想

  师:看好了。

  (出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置)

  师:要想知道原来这三张牌是怎样摆放的,怎么办?

  生:(上台操作)先交换第二张和第三张位置,再交换第一张和第二张位置。

  师:你为什么这样操作?

  生:我是倒过来想的,刚才最后交换的是第二和第三张,那我就先交换这两张,在交换第一张和第二张。

  师:原来你也是倒过来想的。

  3、运算倒推

  师:我们再来玩一个小游戏,比比谁的反应快!

  (出示:)

  师:你能立刻报出表示多少吗?

  生:18

  师:你是怎么想的?

  生:6×5=3030-20=1010+8=18

  师:你也是倒过来想的

  4、小结

  师:刚才这3个问题,大家都是怎么想的?

  生:倒过来想的

  :师:在数学上,我们把倒过来想的方法称之为“倒推”(板书:倒推)

  今天这节课,我们就一起来研究怎样用倒推解决生活中的实际问题。

  二、教学例题,探究倒推法

  1、(出示例题:小明原来有一些邮票,今年又收集了24张,送给小军30张后,还剩52张。小明原来有多少张邮票?)

  师:你了解到哪些信息?

  生:我知道了小明原有一些邮票,收集了24张,送给小军30张,剩52张。求小明原来有多少张邮票?

  师:你能将这些信息进行整理吗?

  同座位讨论,其中一人记录。

  生:(同座位讨论整理过程)

  师:谁来介绍一下你们是怎么整理的?

  生:原有?张→又收集24张→送给小军30张→还剩52张

  师:我们已经整理了信息,你准备怎样解决这个问题?试一试。

  生:(尝试解题)

  师:谁来介绍你的计算方法?

  生1:52+30-24=58(张)

  师:你能具体说说算式的意思吗?

  生:从结果开始想,送出的要收回,而收集的要去掉。

  师:你听懂了吗?

  这个结果正确吗?你有办法验证吗?

  生:58+24-30=52(张)

  师:你是用顺推的方法,看剩下的是不是52张。

  这一题你还有不同的计算方法吗?

  生2:52+(30-24)=58(张)

  师:你能解释算式意思吗?

  生:在变化过程中,小明的邮票总共减少了6张,所以要用剩下的52张加上6张。

  师:听懂了吗?

  通过计算我们知道了小明原来有52张邮票。

  2、小结:

  师:第一种解法,是从结果出发,按顺序倒推出原来的情况。第二种解法,先比较小明的邮票是增加了还是减少了,再从结果出发倒推退出原来的情况。

  师:这两种解法列式不同,但在思考过程中有什么相同点?

  生:都采用了倒推的方法。

  师:为什么你们都选择倒推解决这个问题呢?

  生:比较简单,容易理解。

  师:原来用倒推解决这种问题,是一种既简洁又方便的解题策略。(板书:解决问题的策略)

  3、试一试

  出示图:

  师:你从图中你知道了什么?

  生:甲乙两杯果汁原来共重400毫升,从甲杯倒入乙杯40毫升,两杯果汁就同样多了,求原来两杯果汁各有多少毫升?

  师:你会解决这个问题吗?试一试。

  师:谁来说说你是怎么解决的?

  生1:400÷2=200(毫升)

  甲:200+40=240(毫升)

  乙:200-40=160(毫升)

  师:你能具体说说这三步的意思吗?

  生1:400÷2=200(毫升)求的是现在甲、乙两杯有多少毫升,再把到入乙杯的40毫升倒回去,200+40=240(毫升),求出甲原来有多少毫升,200-40=160(毫升),求出乙原来有多少毫升。

  师:他是用倒推的方法解决的,还有不同的方法吗?

  生2:40×2=80(毫升)

  400-80=320(毫升)

  原乙:320÷2=160(毫升)

  原甲:160+80=240(毫升)

  师:原来你是用另一种方法来解决的`。

  师:倒推是解决这个问题的策略,当然也可以用其他方法来解决。

  三、巩固应用,提高运用策略的能力

  师:既然大家已经学会了倒推的解题策略,你会解决下面的问题吗?

  1、(出示:练习十六3)

  师:认真读题。

  你会解决吗?在练习纸上画一画。

  师:谁愿意说说你的方法?

  生:(边展示边讲解)从蛇馆向北走2格到猴山,再向西走4格到百鸟园,再向

  东南走一格到熊猫馆,最后向南走2格到大门。

  师:大家同意他的做法吗?

  2、(出示:练习十六2)

  师:你会解答吗?独立完成。

  师:谁来说说你是怎么算的?

  生1:5+25+10=40(分)10时-40分=9时20分

  生2:10时-10分-25分-5分=9时20分

  3、(出示:练一练)

  师:独立完成

  师:我们一起来看看几种不同的解题方法。

  (25+1)×2=52(张)

  25×2+1=51(张)

  师:哪种方法是正确的呢?

  你有办法验证自己的方法是正确的吗?小组讨论。

  师:我们一起来交流一下。

  生1:把52代入原题,进行顺推,看剩下的是不是25张。

  生2:51除以2就得到25.5张,这是不可能的。

  生3:用画线段图的方法。

  ......

  师:通过验证,我们知道了小军原来有52张画片。

  接着往下看。

  (出示:小军收集了一些画片,他拿出画片的一半还少一张送给小明,自己还剩25张,小军原来有多少张画片?)

  师:你能解决吗?

  生:(25-1)×2=52(张)

  四、总结全课,指导解题策略

  师:今天这节课,我们学会了什么解题策略?

  生:倒推。

  师:用倒推解决问题应从哪想起?

  生:从结果想起。

  师:倒推就是从结果出发,按顺序倒推出原来的情况。

  五年级数学《解决问题的策略》教案 10

  一、课前游戏:

  文字游戏——说反话、做动作

  左、加法、乘法、上来、买进、给你、送出去、往南

  二、导入新课:

  1、快速抢答:

  课件出示:

  (1)我送给小红4张邮票,现在我有12张,我原来有( )张邮票。

  (2)一杯果汁再倒入40毫升后是200毫升,原来这杯果汁有( )毫升。

  (3)把甲杯里40毫升果汁倒给乙杯后,现在甲杯有100毫升,甲杯原来有( )毫升。

  同学们,你们为什么答得那么快呀?你能选一个说说你是怎么想的吗?你发现这几个题目有什么共同点吗?

  引导学生说出这几题都是已知现在,求原来。我们可以怎么想呢?相机板书:

  原来 倒过来 现在

  2、课件出示逆运算题:( ) ( ) (20)

  师:你能挑战一下这一题吗?

  学生试答,让他们说说自己是怎样想的?

  引出倒过来推算

  师:算出来的得数10对不对?我们有什么办法证明?

  生:顺着计算一遍。

  引导学生口头验算结果,然后回答第2小题。

  ( ) ( ) (54)

  3、小结。

  师:今天我们要学习的策略就是……?

  生答师板书:倒推

  三、教学例题:

  (一)、教学例

  1,学会基本的倒推思想。

  1、课件逐步出示例1情境图,生观察,并相机阅读条件和问题。

  师:你准备用什么策略来解决这个问题?(生自由汇报)

  师:你准备先从哪个条件入手解决这个问题?(生汇报)

  师:你准备怎么解决这个问题?(生自由汇报思考过程)

  2、画杯子图倒过来分析证明。(课件画图演示过程)

  3、填表分析。

  师:现在甲杯和乙杯各有多少毫升?你是怎么想的?原来甲杯和乙杯各有多少?你又是怎么想的?

  4、列式计算。

  师:你准备怎么列式计算?先算什么?再算什么?

  板书: 400÷2=200(毫升)

  甲杯 200+40=240(毫升)

  乙杯 400-240=160(毫升)

  师:为什么先算400除以2得到200,第二步为什么用200加40?算乙杯除了可以用400减去240,还可以怎样想?(板书:或200—40=160)

  5、学生检验。

  师:这个答案对不对,咱们想个办法证明一下。

  6、师:同桌说说解决这道题目的策略。(学生小组交流)

  7、出示练习十六第1题。(设计情境,收集上海世博会纪念卡)

  师:你准备怎样解决这个问题,用怎样的策略?

  学生根据题目中的条件信息,独立列式解答,教师巡视,注意后进生的答题情况,再汇报交流思考过程。

  师:第一步用60除以2算的是什么?根据什么条件这样算的?(生答)

  统计正确率,表扬与鼓励同步。

  师:有些题目在解答之前,我们可以先把重要的信息先整理出来。

  (二)、教学例2,学习如何收集、整理信息,再倒过来推想。

  1、课件播放例题2。

  读题,出示学习建议。

  学生同桌合作学习,教师巡视,挑选代表性作业实物投影交流。

  生汇报倒过来推想的策略,教师小结:

  课件倒过来逐个出示:

  探索简便思考过程

  师:我们也可以像上课开始做的那道逆运算题目一样,把题目简单化。

  课件出示:( ) ( ) (52)

  师:你会倒过来推算吗?(生口答)

  2、列式计算:

  师:先在小组里说说自己的想法,再列式解答。

  生答师板书方法一:52+30-24=58(张)

  师:还有什么思考方法可以找出答案?

  师:又收集的比送给小军的少6张,现在比原来就怎么样?

  生答师板书方法二:30-24+52=58(张)

  3、验算证明:

  师:根据求出的答案,再顺推过去,看看剩下的是不是52张?

  生口头检验。(58加收集的24张就有82张,送给小军30张减去30就还剩52张)

  4、小结:

  师:不管用哪种计算方法,咱们在解题之前的思考过程都用到了什么策略?

  生:倒过来推想的策略

  师:看来,倒过来推想的策略还真的很重要呢!

  (三)、教学练一练题型,理解“一半多一些”题目的思考策略。

  1、课件播放练一练题目。

  (1)学生自由读题,说说通过读题,哪些地方有疑惑?

  预设:学生会说出“一半多一张”不太明白,教师提示:你能用两个动作来解释一下这句话吗?提供一叠画片,操作演示,帮助学生分析理解。

  结合学生的理解,逐步出示题目的变化信息,引导学生用简单的箭头图来表达。

  (2)师:根据摘录整理到的信息,你会倒过来推想吗?

  生汇报倒过来思考的过程,师相机课件出示。

  (3)师:根据这种倒过来推想的'方法,你会列式计算吗?

  生独立列式解答,再汇报交流思考过程。

  (4)检验答案。

  四、巩固应用

  1、选一选:出示小刚买一个铅笔盒用去所带钱的一半,买一本笔记本又用去2元,这时还剩16元,小刚原来带了( )钱。(此题的安排目的主要是让学生能够巩固对“一半”题目类型的理解,并引导学生做选择题的方法还可以用答案代入法,其实也体现了学生的检验过程和与顺推思路的比较。)

  2、估一估、比一比:设计去苏州乘火车到上海参观世博会情境题,一种情况是家中8:20出发,到达苏州火车站约什么时刻?另一种情况是火车发车时间为8:20,从家到常熟客运站30分钟,再到苏州汽车站为1小时,从汽车站到火车站还需5分钟,为了不误车,最迟什么时候从家中出发?(让学生通过比较,进一步理解什么情况下适合用倒推策略来解决实际问题)

  五、总结谈话:

  今天你有什么收获?

  六、思维拓展:

  1、我来吟诗:古人用倒推作诗

  2、尝试做思考题“李白喝酒”。随音乐出示题目,教师先进行分析题意。

  借助箭头变化图帮助学生理解,让学生用今天所学的策略尝试解决。

  生课后讨论交流,然后汇报交流。夺取智慧星。

  五年级数学《解决问题的策略》教案 11

  一、教学目标分析

  一一列举是把事情发生的各种可能逐个罗列,并用某种形式进行整理,从而找到问题的答案。本课的教学目标为:进一步加深对现实问题中基本数量关系的理解,增强分析问题的有序性;进一步体会解决问题策略的多样化,增强灵活选用策略的能力。在落实教学目标方面要避免以下问题。

  不重视一一列举的有序性。某些教师认为苏教版教材在教学一一列举策略之前,每个学期都或多或少地渗透了这个策略,只是没有提炼出策略名称而已。特别是四年级下册学习搭配的规律时,学生已经会不重复、不遗漏地进行搭配,因此本课无须强调有序。苏教版关于“解决问题的策略”的编排特点是,先将要学习的策略渗透到各部分内容之中,然后从四年级上册开始安排“解决问题的策略”单元,集中教学解决问题的策略,促进学生掌握一些基本的策略,提高学生解决问题的能力。这就要求教师在教学时正确处理好策略的分散教学和集中教学的关系,唤醒学生已有的一一列举经验,引导学生探究一一列举策略的内涵,学会有序思考。

  呆板、僵化地理解一一列举策略。教材中的一一列举策略主要是借助表格呈现的,因此部分教师错误地认为一一列举策略就是用表格呈现所有可能的'策略。事实上,列表策略强调的是用表格呈现信息,一一列举策略强调的是列出所有的可能情况。用表格列出所有可能的情况只是一一列举策略的一种具体表现形式,这种形式能较清晰地列出所有的可能,但并不是唯一的形式。教师可引导学生在掌握用列表法进行一一列举的基础上思考不用表格如何做到一一列举。

  孤立地学习某种策略。苏教版教材从四年级上册开始组织学生集中学习列表、画图、一一列举、倒推、假设、替换、转化等策略。教学时,教师不能孤立地教学其中的某种策略,而应了解编者的意图,有机地将前后策略联系起来,提高策略教学的有效性。

  二、教学过程

  (一)感受情境,唤醒记忆

  1、以“宝贝向前冲”为情境,引出3道不同年级的数学题。

  (1)把7个苹果分成2堆,有哪几种分法?

  (2)有3个木偶娃娃和2顶帽子,最多有多少种不同的搭配方法?

  (3)用小数点和2、3、4最多可以组成几个不同的两位小数?

  2、引导学生找这3道题的解法的共同特点,并想一想在解题时要注意什么。(要注意有序性,做到不重复、不遗漏。)

  3、揭题。

  【用学生已会解决的不同层次的3个实际问题为教学引子,唤醒学生关于有序的经验,并在反思解题的共同特点和注意点时,让学生感知本课教学的重点——有序思考。这样的设计旨在梳理分散在各个年级的与一一列举有关的内容。】

  (二)整理信息,感悟策略

  例l:王大叔用18根l米长的栅栏围一个长方形羊圈,有多少种不同的围法?

  1、整理信息。提问:从题目中能获得哪些数学信息?

  2、出示表格。小组先动手围一围,再将不同的围法填入表格(表格主要包含长、宽、周长、面积等项目)。

  3、汇报结果。交流所填表格,并思考为什么会出现重复和遗漏的现象。

  4、整理表格。让学生结合具体的无序的表格谈谈怎样使之有序。

  5、探寻规律。引导学生结合有序排列的表格,探寻表格中隐含的数学规律,得出:

  ①周长不变。不管怎样 围,周长都是18米。

  ②长、宽和面积都在变。长由8米变到5米,宽由1米变到4米,相应的面积由8平方米变到20平方米。

  ③长与宽的差越小,长方形的面积就越大。

  ④从充分利用资源的角度考虑,应选择面积最大的围法。

  6、回顾反思。引导学生回顾帮王大叔解决围羊圈问题的过程,思考有哪些收获、有哪些要注意的事项。教师归纳;用一一列举的策略能列出解决问题的所有可能策略;有序思考不仅能保证列举时不重复、不遗漏,还有助于发现规律。

  【本环节旨在促进学生用表格进行一一列举,并借助表格理解基本的数量关系、发现数量的变化趋势。教学时要突显有序思考,可分四个层次展开:第一层,整理信息。为了防止学生囫囵吞枣地理解题意,可先让学生读题后说一说自己的理解,再相互交流,认识基本的数量关系。第二层,无序列举。可故意将表格多设计几行,设置陷阱,“诱使”学生出现重复或遗漏的情况,还可在学生汇报时有意展示有重复、遗漏现象的表格,让学生意识到无序会导致遗漏或重复,引发学生的思考。第三层,有序列举。引导学生思考怎样才能做到不重复、不遗漏,让学生认识到列举时要有条理、有序,体验有序的重要性,增强思维的条理性和严密性。第四层,反思提升。在回顾解决;问题的过程中, 反思、感受一一列举的特点和价值。】

  例2:订阅下面的杂志(图中杂志为《科学世界》、《数学乐园》、《七彩文学》,图略),最少订阅1种,最多订阅3种,有多少种不同的订阅方法?

  1、学生独立整理信息,理解“最少订阅1种,最多订阅3种”的意思。

  2、引导学生按独立思考——同桌交流——全班交流的步骤列出所有可能的订阅情况,重点交流订阅2种的可能情况,突出有序思考。

  3、引导学生思考“如果不列表,还可以怎样列举所有可能的订阅情况”,并尝试用字母、数字、符号或其他形式表示这3种杂志,列出所有可能的订阅情况。

  4、引导学生比较哪种方法简便,并说说理由。

  【本环节旨在让学生进一步体会解决问题策略的多样性,增强灵活选用策略的能力。让学生探索不列表时怎样列举所有可能的订阅情况,能促使学生多视角、多形式地解决问题,有效预防学生把解决具体问题作为学习目标,或片面地将一一列举策略理解为通过表格列举的策略,提高他们灵活选用策略的能力。】

  (三)解决问题,巩固策略

  1、独立完成教材第64页“练一练”:“一张靶纸共3圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中2次,可能得到多少环?”

  2、独立思考:把“小华投中2次”改为“小华投了2次”,结果怎样?

  3、说说生活中哪些地方用到了一一列举策略,具体是如何应用的。

  【本环节旨在让学生独立应用一一列举策略解决实际问题,进一步内化一一列举策略。】

  五年级数学《解决问题的策略》教案 12

  达成目标:

  1、从解决简单的实际问题的过程中,体会用“一一列举”策略的特点和价值,能不遗漏,不重复找到符合要求的所有答案。

  2、通过反思和交流,进一步积累解决问题的经验,发展思维的条理性和严密性,从而使学生获得解决问题的成功体验,树立学好数学的自信心。

  教学重点:

  体会策略的价值,感受策略带来的好处,使学生能主动运用所学的策略解决问题。

  教学难点:

  在学习过程中,能主动反思自己的解题过程提升对策略的认识。

  教学过程:

  一、导入

  出示草原牛羊成群图。

  问:你们喜欢草原吗?那里的风景优美,牛羊又肥又壮,可是牧民叔叔准备用18根1米长的栅栏围一块长方形的羊圈,你能为牧民叔叔设计一下吗?

  二、探究策略

  1、初次探究

  小黑板出示:用18根1米长的栅栏围成一个长方形的羊圈。

  问:根据这句话的信息你想采用什么方法来帮牧民叔叔呢?

  问:用摆小棒的方法来研究的`上来汇报一下,有多少种长方形?你能通过有条理的操作把不同的围法都找出来吗?感觉怎样?有没有其它的方法?

  2、进一步探究

  问:用18根1米长的栅栏围成一个长方形的羊圈周长是多少?如果宽是1米,长是多少米?如果宽是2米,长是多少米?……

  问:你能把符合要求的长和宽可能性一一列举出来吗?

  学生填写第63页的表格。

  3、体会列表的特点

  问:反思一下刚才的思考过程,你有什么体会?

  板书:有序(有条理)一一列举不遗漏不重复。

  让学生再次说说应该怎样有条理地思考。

  出示:像这样有条理的把可能性一一列举出来,从而找到问题的答案,这种解决问题的策略就叫列举。在列举时要注意按照一定的顺序,这样才能做到不重复、不遗漏。

  4、进一步引导

  这几种围法中牧民叔叔会喜欢那种呢?为什么呢?

  出示:周长相等的长方形,长和宽的差越大,面积就越小;长和宽的差越小,面积就越大。

  三、体会策略中的技巧

  出示例题2。

  读题后问:“最少订阅1本,最多订阅3本”是什么意思?

  订阅的方法可以分几类?你准备用什么策略解决这个问题?这三种订阅的杂志可不可以用其它什么来表示?为什么?

  小组讨论并集体交流。

  展示不同的思考方法:

  (1)用1、2、3代表不同的杂志。

  (2)用a、b、c代表不同的杂志。

  (3)用甲、乙、丙代表不同的杂志。

  (4)用(0、00、000)代表不同的杂志……

  引导:如果只订1本,有几种不同的方法?订1本杂志要分几列?订2本杂志有几种不同的方法?应分几列?3本呢?你是怎样想的?最后怎么看一共有多少种不同的订阅方法?

  3+3+1=7种。

  师说明:无论你用什么符号来表示这三种杂志,列举之前都要将它们分类。这样会有什么好处呢?

  (有一定的规律列举,不重复,不遗漏。)

  四、巩固练习

  做练一练:一张靶纸共三圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?

  问:根据题意你想到了什么?用什么策略解决这个问题?

  交流,说出列举思考的过程。

  五、交流中总结收获

  这节课你最大的收获是什么?“一一列举”对我们解决生活问题有什么好处?

  六、课堂练习

  做练习十一的第1—3题

  教材分析:

  解决问题的策略这一单元是采用列表的方法收集,整理信息,并在列表的过程中寻求解决实际生活问题的有效方法。体会解决问题的策略常常是多样的,同一个问题可以用不同的策略,从不同的角度去分析。例1利用学生对长方形与它的长和宽关系的已有认识,要求学生找出用18根1米的栅栏围成长方形的各种方法,在寻找策略中体会“一一列举”的特点和价值。例2是在例1的基础上启发学生用“一一列举”的策略解决实际问题时,要不重复、不遗漏地进行思考过程。在探讨中让学生积极参与,感受解决问题的策略是在具体生活中的运用,从而激发学生主动运用所学到的策略解决简单的实际问题的兴趣。

  五年级数学《解决问题的策略》教案 13

  教学目标:

  1、经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。

  2、在对解决简单实际问题过程的反思和交流中,感受"一一列举"的特点和价值,进一步发展思维的条理性和严密性。

  3、增强解决问题的策略意识,提高解决问题的实际能力。

  教学重点:

  能对信息进行分析,用"一一列举"的.策略解决实际问题。

  教学难点:

  能有条理的一一列举,发展思维的条理性和严密性。

  教学准备:

  小棒、答题纸、扑克牌、课件。

  教学过程:

  一、情境导入

  谈话:请同学们回忆一下,我们已经学过哪些解决问题的策略?(板书:画图,列表)

  引入课题:解决问题的策略还有很多,今天我们就继续来学习解决问题的策略。

  谈话:看,这是什么?(扑克牌)老师抽去大王和小王之后,你们知道一副扑克牌有几种不同的花色吗?(四种)老师从中任意抽出一张,猜一猜有可能是什么?一共有几种情况?(四种)是哪四种呢?你能一个一个的给大家列举出来吗?(草花,黑桃,红心,方块)

  刚才同学们将这些花色一个一个列举了出来了,我们称作——一一列举(板书)。这也是一种解决问题的策略,在解决数学问题时,我们经常需要用到。这不,我们村的王大叔就碰到了一件事:……(课件出示例1)

  二、思索探究、交流共享

  1、情景创设,呈现问题。

  出示例1及其场景图,自主读题。

  师:从条件中你获得了哪些数学信息?

  生1:围成一个长方形。生2:周长22厘米。

  师:你是怎么知道的?从“周长22厘米”你还能知道什么?

  生:长方形的一长一宽是11厘米。

  师:你是怎么得到的?(课件:22÷2=11厘米)

  师:要想知道怎样围面积最大,就需要先把符合要求的长和宽一一列举出来,再计算出面积进行比较。

  2、尝试操作,寻找方法。

  师:大家愿不愿意帮帮王大叔啊?请把你认为可行的方案写在表格里。如果有困难的可以用小棒摆一摆,再填写。

  (学生填写)

  3、小组比较,优化策略。

  师:哪位同学愿意把整理的拿到前面和大家一起交流?(选择一位无序整理一位有序整理)

  师:这两位同学通过一一列举都得到5种围法,比较一下,你更欣赏谁的整理?理由是什么?(板书:有条理、有顺序)有条理、有顺序的一一列举有什么优点?(板书:不重复、不遗漏)

  生调整表格。

  师:你建议王大叔选择哪种围法?为什么?

  4、观察结果,发现规律。

  师:观察表格,比较这些长方形的长、宽和面积,你还发现了什么?(小组讨论)

  引导学生回答:在()情况下,长和宽(),面积越大。(课件)

  师:瞧,有序地一一列举不仅帮王大叔解决了问题,我们从中还能获得其他的规律呢。

  三、检测完善

  1、完成“练一练”第1题。(读题,小组讨论)

  交流:下面哪些时刻也会发出铃声?你是怎样确定的?

  说明:我们可以根据条件中每隔40分钟发出铃声的规律,继续一一列举到16:00,就能知道哪些时刻也是会发出铃声的。

  2、完成“练一练”第2题。

  让学生阅读习题,说说要怎样选择怎样搭配?

  交流:你是怎样解决的,一共有多少搭配?说说列举的顺序。

  师:进入“智慧屋”,你敢挑战吗?

  3、练习十七第1题。

  你能列举出所有算式吗?(生独立完成)

  交流时,提醒学生一句口诀可以写出两道乘法算式,所以一共可以写出9道。

  4、练习十七第2题。

  生读题,理解题意。

  生独立完成表格,汇报。

  5、练习十七第3题。

  生读题,理解题意。

  师:想想有几种情况?(可以贴一张、两张、三张、四张)遇到这种复杂问题,我们应该怎么解决?(先分类,再一一列举。)

  生独立完成,再汇报。

  6、练习十七第6题。

  师:“投中两次”是什么意思?有几种不同的情况?请在练习纸上自己列举出所有可能的答案。(生独立完成)

  交流,你是怎样列举的?

  共同校对。按照顺序列举,一共有多少种不同的环数?

  (交流时明确:8+8=16,10+6=16,算同一种环数。)

  四、全课总结

  师:这节课你学到了什么?运用“一一列举”这一策略解决解决问题时要注意什么?

  五、布置作业

  完成《补充习题》

  五年级数学《解决问题的策略》教案 14

  教学目标:

  1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。

  2、使学生在对自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  让学生体会策略的价值,并使学生能主动运用策略解决问题。

  教学难点:

  在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

  教学准备:

  课件、小棒、表格。

  教学过程:

  一、谈话导入。(2分钟)

  谈话:同学们,我们以前学到过解决问题的'策略,想一想:我们都学过哪些策略啊?(板书:从条件想起,从问题想起,画图,列表)

  引入课题:今天我们就继续来学习解决问题的策略。

  二、教学例1。(20分钟)

  (一)弄清题意,引发需求

  1、出示例1:王大叔用22根1米长的木条围一个长方形花圃,怎样围面积最大?

  2、(指名读题):从题中你能获得哪些数学信息?你还能发现题目当中隐藏的`信息吗(2人答)?(长方形的周长是22米)(掌声)

  师:周长一定是22米,是保持不变的,长和宽也会像周长这样保持不变吗?长和宽在变化,那么面积也就有大(顿)有小。

  师:长和宽可能会是几米?指名答 (板书: 长: 9 宽: 2 )

  他猜得对吗?再指名答理由(2人)。(板书:长+宽:22÷2=11(米) )

  设疑:还有不同的围法吗?(有)大家想一想:在这么多围法当中(板书:),要想知道怎样围面积最大,可以怎么做?(把所有围法都列举出来)大家想不想亲自动手来围一围?

  (二)尝试列举,感知策略

  1、分层提出要求:

  请你用22根小棒摆出不同的长方形,将结果填写在记录单中。

  也可以直接填写记录单,再通过摆小棒来验证自己的猜想是否正确。

  学生操作,师注意收集(A:遗漏B:重复C:全但无序D:有序)的表格进行投影展示。

  2、比一比:大家更欣赏哪种记录方法?(D)为什么?(板书:按顺序)按顺序列举有什么好处?(板书: 不重复 不遗漏)

  师:这位同学真了不起,掌声送给他。(掌声)

  师:请刚才没有按顺序填写的同学改成按顺序填写,老师也来改一改。( 补齐板书:长(m):10 9 8 7 6

  宽(m): 1 2 3 4 5 )

  7、同学们数数看,一共有多少种不同的围法?(5种)现在你知道怎样围面积最大吗?(长6米,宽5米)你是怎么知道的?

  (补齐板书:面积(㎡):101824 2830)看来我们还要对列举出来的结果进行分析、比较,这样才能选出我们想要的。

  8、小结揭示课题:像刚才这样把事情发生的所有结果按照一定的顺序一一列举出来,也是一种解决问题的策略,我们通常就称它为“一一列举”的策略。(板书:——一一列举)齐读课题。

  (三)反思回顾,加深理解

  1、提出要求:回顾刚才解决问题的过程,你有什么体会?(列举能帮助我们解决问题,列举时要有序思考,对列举的结果要进行比较)

  2、进一步要求:其实列举的策略同学们并不陌生。大家思考一下:在以前的学习中,我们曾经运用列举的策略解决过哪些问题?小组交流。(如:一年级:10的分与合)

  追问:用列举的策略解决问题有什么好处?在列举时需要注意些什么?

  过渡:王大叔有个女儿叫小芳,他送给小芳一个礼物,是什么呢?对,小闹钟

  三、拓展应用,丰富体验。(16分钟)

  1、出示“练一练”第1题。(突出“有序”)

  (1)指名读题,指名板演。

  (2)学生尝试解答,组织交流反馈:重点让板演的学生说说是怎样列举的。

  过渡:你们喜欢学校的饭菜吗?小芳也很喜欢,让我们来看一看小芳所在学校食堂的饭菜情况。

  出示练一练第二题。

  进行荤菜搭配时,可以按表中的样子从荤菜想起,也可以从素菜开始一一列举,一共有12种不同的搭配。

  过渡:小芳有一个爱好是上网,在课余时间经常通过浏览一些网站来增长自己的见识。大家是否知道网站为了及时发布最新的消息,都需要定期更新。我们一起来了解一下。

  2、出示“练习十七”第2题。(突出“对结果要比较、观察”)

  (1)指名读题,师引导学生观察A网站怎样更新后再提出要求:先在下表里画一画,再回答。

  (2)组织交流反馈:重点突出对列举的结果要观察、比较。

  联系生活:上网确实很好玩,但同时郑老师也对大家提一个小小的要求:希望大家要做到“文明上网、适度上网”,千万不能沉迷于网络。

  过渡:小芳除了喜欢上网之外还有一个爱好是收集邮票,先课件出示4张邮票(师介绍“邮票”,认识邮票面值),再课件出示问题(师介绍“邮资”:就是指邮票的面值之和。)

  3、出示“练习十七”第3题。(引出分类列举的思想)

  提问:你打算怎样解决这一题?指名回答,生口头说出按怎样的思路来列举即可。

  四、总结全课

  同学们,这节课我们学了什么策略?你有哪些收获?还有什么要提醒大家的?(列举时需要注意什么)

  同学们,在我们的生活中,采用“一一列举”的策略常常可以使复杂的问题变得简单,使混乱的思维变得清晰,这正是我们学习数学的魅力之所在。

  五年级数学《解决问题的策略》教案 15

  教学目标:

  1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。

  2、沟通“一一列举”和“列表”两种策略的联系,通过列表,帮助学生养成有序列举的习惯。

  3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。

  教学重点:

  能对信息进行分析并用“一一列举”的策略解决实际问题。

  教学难点

  能不重复、不遗漏地有条理地一一列举解决实际问题。

  教学准备

  课件、小棒、表格

  教学过程:

  一、复习导入。(2分钟)

  1、复习:同学们,我们已经学了长方形的周长和面积的计算方法,回忆一下,长方形的周长怎么求?长方形的面积怎么求?(生答师帖卡片)

  请大家齐读一遍。同学们真了不起,学过的知识能记得那么牢!

  2、导入:同学们,以前我们学了一些策略来解决怎样求长方形的周长和面积,今天王大叔遇到了新的难题,大家请看。

  二、教学例1。(18分钟)

  1、出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?

  2、(读题):同学们愿意帮王大叔这个忙吗?

  王大叔遇到了什么难题?谁来说一说?

  师:应该怎样围呢?老师已经为同学们每桌准备了18根小棒,每一根代表1米,请同桌2人合作用小棒在桌子上围一围。在摆之前老师有个说明:(1)每次都要把18根小棒用完。(2)围成一种后就数长和宽各是多少米,记录在老师发给的表一中。(3)尽可能少的移动一些小棒让它变成另一种不同的`围法,再进行记录。

  先想想怎样摆才摆得快,比比看哪一组合作得又快又好。开始动手操作吧!(师巡视,并与生个别交流:还可以怎么摆?不要动太多的小棒。)

  (有的学生已经完成,要鼓励没完成的学生。)

  注意收集有序和无序两张表格准备展示。(看中后可拿大笔给学生描大一些)

  好了,同学们,请停止操作,用很短的时间把小棒收起来。

  3、到底有多少种不同的围法呢?老师手上有两组同学的记录表。(投影)

  大家更欣赏哪种记录方法?为什么?

  (师相机板书:按顺序)

  4、请这位同学说说看,刚才你是怎么想的?(生回答)

  你怎么知道宽是1米的时候长就是8米呢?你是怎么算出来的?

  (生答师展示18÷2=9米)

  大家认为先从宽开始考虑好还是先从长开始考虑好?

  (从最小的宽开始考虑比较好,顺序较明确。)

  5、下面我们就从宽是1米开始摆一摆。

  (学生说教师展示围法)

  6、我还可以继续摆。(展示宽5长4)

  这样行不行?为什么?大家观察一下这个长方形实际是前面4个长方形中的哪一个?重复了,因此我们要把它去掉。(单击鼠标擦掉)

  同学们发现了没有?按顺序摆有什么好处?

  (师相机板书:不重复不遗漏)

  这位同学真了不起,掌声送给他好吗?

  哪位同学刚才没有按顺序排列的请改成按顺序排列好吗?

  7、同学们数数看,一共有多少种不同的围法?(展示答)

  8、小结揭示课题:像刚才这样把事情发生的可能按照一定的顺序,有条理的列举出来,从而找到问题的答案。这就是我们帮王大叔解决问题的一种策略,这种策略叫做一一列举。(板书:解决问题的策略——一一列举)齐读课题。

  我们在一一列举时应注意几点是什么?(按顺序、不重复、不遗漏)

  9、下面我们把每种摆法的面积分别计算出来好吗?

  同学们,在这4种不同的围法当中,你认为王大叔的羊圈用哪种围法比较合适?为什么?(第四种面积最大,养得羊最多。)

  10、说得太好了!请继续观察这张表,你还有什么发现?(面积越来越大)这跟它的长和宽有什么关系?(在周长不变的前提下,长与宽的长度越接近,面积就越大。)

  同学们真是太厉害了!没想到在围长方形的同时,还有一个意外的发现。

  11、同学们,刚才我们学了一种新的策略——有序的一一列举,列举时应注意什么?下面我们就用这个策略来解决一个实际问题,大家有没有信心?

  三、教学例2(10分钟)

  1、出示例2:订阅下面的杂志:最少订阅1本,最多订阅3本。有多少种不同的订阅方法?(读题)

  2、“最少订阅1本,最多订阅3本”是什么意思?

  (生答师展示:可以订阅1本,可以订阅2本,也可以订阅3本)

  3、那我们应该从订几本开始想起比较好?(从只订阅1本开始想起)

  4、下面我们就一起来列举出来好吗?(我们可以怎么订?还可以怎么订?)

  (生说师展示)同学们真是太聪明了,一下子就把所有的!法都列举出来了。!

  5、其实我们还有更简单的办法,那就是列表,用“√”表示订法,订哪本就在相对应的格里打“√”,一列就表示一种订阅方法。同学们能不能利用这张表格,按一定的顺序列举出所有情况呢?请拿出表二试着填一填,不明白的同桌可以讨论讨论。

  6、师展示学生作业,有序和无序两张表格比较。

  7、集体评:第一张表列举出所有情况了没有?再看第二张表列举出所有情况了没有?两位同学都列举出了所有的情况,大家更欣赏哪张表呢?为什么?

  请这位同学说说看,刚才你是怎么做的?(生说师课件展示)你真了不起,刚学的知识就能够运用自如!

  刚才哪位同学没按顺序列举的请改成按顺序列举好吗?

  8、同学们数数看,一共有多少种不同的订阅方法?我们一起来答出来吧?(齐答)

  9、小结:看来同学们已经学会了运用一一列举的方法,来解决生活中的一些实际问题,想一想:要想得到全部答案,列举时要注意什么?

  (按顺序、不重复、不遗漏)

  一一列举在生活中随处可见,不经意我们就会遇见它,有时他还会出现在我们的投镖游戏中。

  四、拓展运用知识,解决生活问题。(9分钟)

  1、出示“练一练”,生齐读题。

  2、同学们玩过投镖游戏吗?投中两次是什么意思?(两镖都投在靶上)

  我们来投一次好吗?(让学生举起手来一起做投镖的动作)你想得到多少环?再投第二镖,投中多少环?会有几种情况出现?(可能两次都投中同一个环数,也可能两次投中不同的环数。那老师就根据这两种可能制成一张表。)

  3、展示表格:画“√”表示投中,一个“√”表示一镖。一列就表示一种情况。请同学们拿出表3,按一定的顺序列举出所有情况。

  4、师展示表,哪位同学愿意上来填这张表?

  5、集体评:他这样填可以吗?为什么?按顺序有什么好处?(如果有时间,就让这位同学说说是怎么想的)

  刚才哪位同学没按顺序列举的请改成按顺序列举好吗?

  6、请同学们观察总环数,你有什么发现?(注意:有两个16环,答题时只写一次就行了,不要重复。)

  齐答。

  五、总结全课(1分钟)

  同学们,这节课我们学了什么策略?列举时需要注意什么?

  (生答师展示)

  六、结束语

  同学们,我们在解决问题的时候,采用一一列举可以使复杂的问题变得更简单,老师希望同学们在生活中利用这种方法去为我们的生活排忧解难,这正是我们数学的魅力之所在。

  好了,这节课我们就上到这里,下课!

  板书:

  长方形的周长=(长+宽)×2

  长方形的面积=长×宽

  解决问题的策略——一一列举

  按顺序

  不重复

  不遗漏

  五年级数学《解决问题的策略》教案 16

  教学目标:

  1、使学生经历用列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。

  2、 使学生在对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的信心。

  教学重点:

  能对信息进行分析,用一一列举的策略解决实际问题。

  教学难点:

  能有条理的一一列举,发展思维的条理性和严密性。

  教学过程:

  一、谈话导入 回忆策略

  1、谈话:老师先来和大家玩个游戏,怎么样?看,这是什么?(扑克牌)

  老师抽出大王和小王,你们知道一副扑克牌有几种不同的花色吗?(四种)

  老师从中任意抽出一张,猜一猜有多少种不同的结果?(四种)是哪四种呢?(草花,黑桃,红心,方块)

  2、揭题:刚才同学们将这些花色一个一个列举了出来(板书:一一列举),一一列举也是我们解决数学问题时经常要用到的'一种策略。今天我们一起来研究这种解决问题的策略(板书课题)。

  二、教学例题 探究列举的方法

  (一)情景创设 呈现问题

  1、师:我校操场东面有一块空地,学校想将把这块空地利用起来,用18根1米长的栅栏围成一个长方形的花圃,有多少种不同的围法?

  (1)从条件中你获得了哪些数学信息?(周长是18米)你是怎么知道的?

  (2)真了不起,你连这隐藏的`数学信息也找出来了,周长是18米,那么说明长和宽的和是多少?(课件出示,长+宽=9米)

  (3)长方形的长+宽=9米,那么这个长方形花圃可以怎样围?你能帮老师来设计一下这个长方形花圃吗?

  请拿出准备的小棒,同桌合作摆一摆,并想想有没有不同的围法吗?

  2、学生尝试操作。

  (1)学生操作,教师指导。

  (2)交流反馈:哪个小组先来说说你们的围法?检验是否符合要求。

  其它小组有不同的摆法吗?

  五年级数学《解决问题的策略》教案 17

  教学模式:

  先学后教 当堂检测

  关键词:

  有序地思考 不重复 不遗漏

  教学目标:

  1. 学生经历用列举的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。

  2. 学生在以自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。

  3. 学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。

  难点重点:

  重点:能对所给信息,用“列举”法解决问题。

  难点:灵活运用列格、画图、连线等方法进行列举。

  教学准备:

  小棒、表格。

  教学步骤:

  一、游戏激趣,情境引入。

  1.游戏激趣。

  师:我这里有一叠扑克牌反扣在桌面上,请你从中找出数字最大的那张牌。

  【设计说明:让学生初步感受要想知道哪张牌的数字最大,只有翻出所有的牌,感受一一列举。】

  2.引入课题。

  师:在四年级的时候,我们曾经两次学习到解决问题的策略,(板书课题:解决问题的策略)策略是什么意思呢?(方法。)还记得学过的是哪两种策略?(画图法、列表法。)今天我在上学的路上看到一位王大叔打算用22根1米的木条长的木条围一个长方形花圃。可他遇到了一个问题,我们愿意帮帮他吗?

  二、组织探究,获取新知。

  1. 弄清题意,引发需求。

  ⑴出示例1及其情境图,引导学生自主观察、阅读。

  ⑵ 提问:从题目中你了解到哪些信息?(周长是22米,可以围成大小不同的长方形。围成的长方形的长和宽都是都是整数。)

  师:周长总是一定的,长和宽也是固定的吗?面积呢?怎样围面积最大呢?

  ⑶提出要求:如果用22根同样长的小棒表示这22根1米长的木条,你能先试着摆出一个符合要求的长方形吗?

  学生尝试操作后,组织交流,并把不同围法展示出来。

  ⑷启发:同学们通过动手操作找到了这么多围法,那么是否还会有其他围法呢?怎样围长方形的面积才能最大呢?

  ⑸指出:要知道怎样围面积最大,就要把不同围法一一列举出来,计算面积后再进行比较。

  【设计说明:让学生用小棒先试着围一围,一方面可以使他们更加准确地理解题意,另一方面也能使他们明确认识到:按要求围出的长方形周长一定是22米,而长、宽以及面积则是不确定的。由此,学生就会产生“要知道怎样围面积最大,就要把各种不同围法一一列举出来”的心理需求。把学生在操作中的不同围法展示出来,既能进一步突出“围法是多样的”,又能把他们的思维从无序引向有序,从而初步体验有序列举对解决这一问题的必要性。】

  2.尝试列举,感受策略。

  ⑴出示如下

  长/米

  10

  宽/米

  1

  面积/平方米

  10

  ⑵提问:从表中看,你知道填表时是从长是几米的长方形开始想想的?为什么要从长是10米的长方形开始想起?(板书:有序的)

  提示:用22根1米长的木条会不会围成11米或21米以上的长方形?

  ⑶明确:因为围成的长方形的周长一定是22米,所以它的长与宽的和一定是22÷2=11(米)。由此可知,围成的长方形的长最长是10米。

  ⑷提出要求:你能把这张表接着填写完整吗?

  ⑸学生填表后,讨论:通过一一列举,你发现符合要求的围法一共有多少种?这个结果与黑板上展示出来的种数是否一样?你觉得用哪种方法求得的结果更加可靠?

  ⑹进一步讨论:根据列举的结果,你知道怎样围面积最大吗?

  ⑺指出:刚才,我们通过有条理地一一列举求出了答案,列举是解决这个问题的基本策略。(续写课题:——列举。)

  【设计说明:为了让学生更好地掌握的思考方法和具体操作过程,列表和画图等辅助手段的作用不可低估。另一方面,考虑到学生独立进行列举的思考时,不大可能想到列表,所以上述教学活动先让学生看表,再引导他们根据表中数据的获取过程照样子把表格填写完整,这样的安排有利于学生实实在在地经历过程、掌握方法。此外,在让学生填表格之前,赞引导他们思考“为什么要从长是10米的长方形想起”,则能使他们真正体会到选择合适的“序”进行思考,是保证列举活动展开的重要前提。】

  3.反思回顾,加深理解。

  ⑴提出要求:请大家回顾上面解决问题的过程,说说你有什么体会。在学生交流的过程中相机强调:列举能帮助无们解决一些问题,列举时要注意有条理地思考,对列举出兵结果要进行比较。

  ⑵进一步要求:在以前的学习中,我们曾经运用列举的策略解决过问题。

  让学生在小组内互相说说,并要求他们说清当时是怎样列举的。

  追问:用列举的策略解决这些问题有什么好处?运用列举策略时要注意什么?

  小结:列举可以帮助我们不重复、不遗漏地找出符合要求的所有答案,列举时要按照一晥的顺序进行思考。

  【设计说明:对解决问题过程的回顾,能使列举的策略意义得以凸显。也有利于学生初步掌握列举的思考方法。对以前应用列举策略解决问题的回顾,一方面使学生可以基于更多的应用案例进一步加深对策略应用过程和方法的'认识;另一方面也能使他们感受到策略应用的广泛性,从而更好地体会策略的价值。】

  三、拓展应用,丰富体验。

  ⑴做“练一练”第1题

  ①学生读题后,启发:从题中告诉我们的条件中,你能知道什么?你打算用什么策略一来判断13:00、14:00、15:00、16:00这几个时刻中,哪些也会发出铃声?

  ②学生自主尝试解答后,组织交流反馈,重点让他们呈现解题过程,说说自己是怎样列举的。

  ⑵做“练一练”第2题

  ①学生讲师后,提问:你能看懂题中的表格吗:填表时首先选定的是哪种荤菜?列举完和各种素菜的搭配后,接着考虑的是哪种荤菜?你能把表格填写完整吗?

  ②学生各自填表解答后,交流反馈填表的情况,着重让他们说说是按照怎样的中顺序列举的。

  ③追问:如果先选定一种荤菜,你还能按顺序列举出各种不同搭配吗?

  【设计说明:通过解答与例题题材完全不同的实际问题,有助于学生在不同的问题情境中进一步体会策略的价值,巩固运用策略的方法,丰富运用策略的经验。】

  四、当堂检测

  1.做练习十七第1题。

  学生独立完成解答,集体订正。

  2. .做练习十七第2题。

  先适当帮助学生理解题意,再鼓励他们利用教材给出的表格寻找答案。

  2. .做练习十七第3题。

  先让学生说说付多少种不同的邮资?如果选3枚、4枚邮票呢?

  五、全课小结

【五年级数学《解决问题的策略》教案】相关文章:

五年级数学《解决问题的策略》教案06-30

五年级数学《解决问题的策略》教案[热门]07-01

[热门]五年级数学《解决问题的策略》教案07-01

五年级数学《解决问题的策略》教案(15篇)06-30

苏教版五年级数学《解决问题的策略》教案(精选20篇)05-13

五年级数学《解决问题的策略》教案15篇【荐】07-01

五年级数学《解决问题的策略》教案精品(15篇)07-01

五年级数学《解决问题的策略》教案15篇【实用】07-01

五年级数学《解决问题的策略》教案(精华15篇)07-01