- 相关推荐
八年级上册数学与三角形有关的角的教案
作为一位不辞辛劳的人民教师,常常需要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。优秀的教案都具备一些什么特点呢?以下是小编精心整理的八年级上册数学与三角形有关的角的教案,仅供参考,大家一起来看看吧。

八年级上册数学与三角形有关的角的教案1
[学习目标]
1.理解三角形内角和定理的证明方法;
2.掌握三角形内角和定理及三角形的外角性质;
3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.
[要点梳理]要点一、三角形的内角
1.三角形内角和定理:三角形的内角和为 180°.
要点诠释:应用三角形内角和定理可以解决以下三类问题:
① 在三角形中已知任意两个角的度数可以求出第三个角的度数;
② 己知三角形三个内角的关系,可以求出其内角的度数;
③ 求一个三角形中各角之间的关系.
2.直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余。反过来,有两个角互余的三角形是直角三角形。
要点诠释:
如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角 三角形是等腰直角三角形。
要点二、三角形的外角
1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角如图,∠ACD是△ABC的一个外角
要点诠释:
(1) 外角的特征:
① 顶点在三角形的一个顶点上:
② 一条边是三角形的一边:
③ 另一条边是三角形某条边的延长线.
(2) 三角形每个顶点处有两个外角,它们是对顶角。所以三角形共有六个外角,通常每个顶 点处取一个外角,因此,我们常说三角形有三个外角。
2.性质:
(1) 三角形的一个外角等于与它不相邻的两个内角的和
(2) 三角形的一个外角大于任意一个与它不相邻的内角要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的`推理论证明经常使用的理论依据。另外,在证角的不等关系时也常想到外角的性质。
3.三角形的外角和:三角形的外角和等于360°
要点诠释:
因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°, 可推出三角形的三个外角和是360°.
八年级上册数学与三角形有关的角的教案2
一、创设情景,明确目标
多媒体展示:内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?
二、自主学习,指向目标
学习至此:请完成《学生用书》相应部分.
三、合作探究,达成目标
三角形的内角和
活动一:见教材P11“探究”.
展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.
小组讨论:有没有不同的.证明方法?
反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.
针对训练:见《学生用书》相应部分
三角形内角和定理的应用
活动二:见教材P12例1
展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?
小组讨论:三角形的内角和在解题时,如何灵活应用?
反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
1.本节学习的数学知识是:三角形的内角和是180°.
2.三角形内角和定理的证明思路是什么?
3.数学思想是转化、数形结合.
《三角形综合应用》精讲精练
1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )
A.1个 B.2个 C.3个 D.4个
2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )
A.5 B.6 C.7 D.10
3.下列五种说法:①三角形的三个内角中至少有两个锐角;
②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).
《11.2与三角形有关的角》同步测试
4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?
(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?
(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?
八年级上册数学与三角形有关的角的教案3
一、创设情景,明确目标
投影:金字塔,斜拉大桥,塔吊,自行车等,让学生感受生活中处处有三角形的身影,我们研究的“三角形”这个课题来源于实际生活之中。
请说一说你已经学习了三角形的哪些知识?
二、自主学习,指向目标
1、自学教材第1至3页。
2、学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标
三角形的概念表示方法及分类
活动一:阅读教材第1至2页内容,并思考以下问题:
(1)具有什么特征的图形叫三角形?(不在同一直线上的三条线段,首尾顺次相接所组成的图形)
(2)三角形有几条边?有几个内角?有几个顶点?(3,3,3)
(3)三角形ABC用符号如何表示?三角形ABC的边AB、AC和BC怎样用小写字母分别表示?(a,b,c)
(4)三角形按边分可以分成几类?按角分呢?
展示点评:学生结合图形分别回答,师生共同点评。
小组讨论:三角形的概念,如何用符号表示及分类?
反思小结:三角形的图形特征,有三条边,三个内角,三个顶点,边可以用两个大写字母表示,也可以用一个小写字母表示。
针对训练:见《学生用书》相应部分。
三角形的三边关系
活动二:画出一个△ABC,假设有一只小虫要从B出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长有什么数量关系?请说明你结论的正确性。
展示点评:(1)小虫从B出发沿三角形的边爬到C如下几条线段。
a、从xxBxx鯻xCxx
b、从xxBxx鯻xAxx鯻xCxx
从B沿边BC到C的路线长为xxBCxx。
从B沿边BA到A,从A沿C到C的路线长为xxAB+ACxx。
经过测量可以说xxAB+ACxx>xxBCxx,可以说这两条路线的长是xx不相等xx的
小组讨论:在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形的三边有怎么样的不等关系?
反思小结:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
针对训练:见《学生用书》相应部分
三角形有关知识的运用
活动三:见教材P3例题
小组讨论:等腰三角形中有几个不同的边长?第(2)问中的长4 cm没有明确是腰还是底时应怎么处理?
展示点评:等腰三角形的底和腰的长度,不确定时,应分情况予以讨论。
反思小结:当题目中的条件不明确时要分类讨论。所有的三角形必须要满足三边关系定理。
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
1、概念:三角形,内角,边,顶点
2、符号语言。
3、三边关系。
4、角形的分类。
五、达标检测,反思目标
1、现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)
A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒
2、已知等腰三角形的`两边长分别为3和6,则它的周长为(C)
A、9 B、12 C、15 D、12或15
3、已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为(B)
A、2 cm B、3 cm C、4 cm D、5 cm
4、若五条线段的长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成xx3xx个三角形。若等腰三角形的两边长分别为3和7,则它的周长为xx17xx;若等腰三角形的两边长分别是3和4,则它的周长为xx10或11xx。
5、如果以5 cm为等腰三角形的一边,另一边为10 cm,则它的周长为xx25xcmxx。
6、工人师傅用35 cm长的铁丝围成一个等腰三角形铁架。
(1)若腰长是底边长的3倍,那么各边的长分别是多少?
(2)能围成有一边长为7 cm的等腰三角形吗?为什么?
《11。1。1三角形的边》同步练习题(含答案)
2、四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为()
A、4 B、3 C、2 D、1
答案B选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形。故选B。
3、已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为()
A、3 cm B6 、cm C、9 cm D、3 cm或6 cm
答案A当3 cm是等腰三角形的腰长时,底边长=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长= =4。5(cm),此时能组成三角形。∴底边长为3 cm,故选A。
《11.1与三角形有关的线段》同步测试(含答案解析)
2、一个三角形3条边长分别为x cm、(x+1)cm、(x+2)cm,它的周长不超过39 cm,则x的取值范围是xx。
3、一个等腰三角形的周长为9,三条边长都为整数,则等腰三角形的腰长为xxx。
4、已知a,b,c是三角形的三边长。
(1)化简:|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|;
(2)在(1)的条件下,若a,b,c满足a+b=11,b+c=9,a+c=10,求这个式子的值。
【八年级上册数学与三角形的角的教案】相关文章:
数学全等三角形教案12-30
数学全等三角形教案03-20
小学数学《三角形》教案07-17
三角形数学教案06-04
数学全等三角形教案06-20
三角形分类数学教案02-02
三角形的边数学教案02-22
数学全等三角形教案(必备)06-30
“三角形的认识”数学教案02-02
三角形的内角数学教案02-08