您现在的位置: 范文先生网 >> 理工论文 >> 石油能源论文 >> 正文

可再生氢能应用前景 -- 氢的制取

时间:2007-1-27栏目:石油能源论文

很难大规模使用. 目前
三种电解槽的成本分别为: 碱性电解槽US$400-600/kW, PEM电解槽约US$2000/kW, 固体
氧化物电解槽约US$1000-1500/kW. 当光伏电池和电解水技术联合制氢时, 制氢成本将
达到约US$41.8/GJ(US$5/kg), 而当风力发电和电解水技术联合制氢时, 制氢成本约为
US$20.2/GJ (US$2.43/kg) [20].
2. 太阳能热化学循环制氢
太阳能热化学循环是另一种利用太阳能制取氢燃料的可行技术. 首先, 由太阳能
聚光集热器收集和汇聚太阳光以产生高温. 然后由这些高温推动产氢的化学反映以制
取氢气. 目前国内外广泛研究的热化学制氢反应有: (1) 水的热分解(thermolysis);
(2) H2S的热分解和(3) 热化学循环水分解.
2.1. 水的热分解制氢
由太阳能聚光器产生的高温可以用于对水进行加热, 直接分解而产生氢气和氧气.
反应式如(4)
2H2O → 2H2 + O2 (4)
在这个反应中, 水的分解率随温度的升高而增大. 在压力为0.05bar, 温度为2500K时,
水蒸汽的分解率可以达到25%, 而当温度达到2800K时, 则水蒸汽的分解率可达55%. 可
见提高反应温度, 可以有效产氢量. 然而, 反应所需的高温也带来了一系列的问题.
由于温度极高, 给反应装置材料的选择带来了很大限制. 适合的材料必须在2000K以上
的高温具有很好的机械和热稳定性. Zirconia由于其熔点高达3043K而成为近年来在水
的热分解反应中广泛使用的材料 [21,22]. 其他可选的材料及其熔点见表2.
表2. 作为热化学反应装置备选材料及其熔点 [22]
Table 2 some materials and their melting points [22]
Oxides T oC Carbides T oC
ZrO2 2715 B4C 2450
MgO 2800 TiC 3400-3500
HfO2 2810 HfC 4160
ThO2 3050 hBN 3000 (decomposition)
另一个问题就是氢和氧的分离问题. 由于该反应可逆, 高温下氢和氧可能会重新结合
生成水, 甚至发生爆炸. 常用的分离方法是通过对生成的混合气体进行快速冷却(fast
quenching),再通过Pd或Pd-Ag合金薄膜将氢和氧分离. 这种方法将会导致大量的能量
损失. 近几年有研究人员采用微孔膜(microporous membrane)分离也取得一些成功
[22,23], 使得直接热分解水制氢研究又重新受到广泛关注.
2.2. H2S的热分解
H2S是化学工业广泛存在的副产品. 由于其强烈的毒性, 在工业中往往都要采用
Claus process将其去除, 见式(5)
2H2S + O2 → 2H2O + S2 (5)
这个过程成本昂贵, 还将氢和氧和结合生成水和废热, 从而浪费了能源. 对H2S的直接
热分解可以将有毒气体转化为有用的氢能源, 变废为宝, 一举两得. H2S的热分解制氢反
应式见(6)
2H2S → 2H2 + S2 (6)
该反应的转化率受温度和压力的影响. 温度越高, 压力越低, 越有利H2S的分解. 据报
道, 在温度1200K,压力1 bar时, H2S的转化率为14%, 而当温度为1800K, 压力为0.33bar
时, 转化率可达70% [24]. 由于反应在1000K以上的高温进行, 硫单质呈气态, 需要与氢
气进行有效的分离. 氢与硫的分离往往通过快速冷却使硫单质以固态形式析出. 同样,
这种方法也会导致大量的能量损失.
2.3. 热化学循环分解水制氢
水的直接热分解制氢具有反应温度要求极高, 氢气分离困难, 以及由快速冷却带
来的效率降低等缺点. 而在水的热化学分解过程中, 氧气和氢气分别在不同的反应阶
段产生, 因而跨过了氢气分离这一步. 并且, 由于引入了金属和对应的金属氧化物,
还大大降低了反应温度. 当对于水直接热分解的2500K, 水的热化学循环反应温度只有
1000K左右, 也大大减轻了对反应器材料的限制. 典型的2步热化学循环反应式见
(7)-(10).
2 y

x O
2
y xM O M + → (7)
2 y x 2 yH O M O yH xM + → + (8)
或者 2 O O M O M y x y x + → ′ ′ (9)
2 y x 2 y x H O M O H O M + → + ′ ′ (10)
其中M 为金属单质, MxOy 或1 1 y x O M 则分别为相应的金属氧化物. 适合用做水的热化学
循环反应的金属氧化物有TiO2, ZnO, Fe3O4, MgO, Al2O3, 和 SiO2等. ZnO/Zn 反应温度较
低, 在近几年研究较多 [24-29]. Fe3O4/FeO 是另一对广泛用于热化学分解水制氢的金属
氧化物. 该循环中, Fe3O4 首先在1875K 的高温下被还原生成FeO 和 O2, 然后, 在573K
的温度下, FeO 被水蒸汽氧化

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >> 

下页更精彩:1 2 3 4 下一页