现在位置:范文先生网>教案大全>数学教案>七年级数学教案>梯形——初中数学第一册教案

梯形——初中数学第一册教案

时间:2024-12-13 15:05:07 宜欢 七年级数学教案 我要投稿
  • 相关推荐

梯形——初中数学第一册教案

  作为一名人民教师,时常需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么写才合适呢?下面是小编为大家整理的梯形——初中数学第一册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

梯形——初中数学第一册教案

  梯形——初中数学第一册教案 1

  教学目标:

  1、经历探索梯形的有关概念、性质的过程,在简单的操作活动中发展学生的说理意识、主动探究的习惯,初步体会平移、轴对称的有关知识在研究等腰梯形性质中的运用;

  2、探索并掌握梯形的有关概念和基本性质,探索并了解等腰梯形的性质,能用它们解决简单的问题。

  教学重点

  探索梯形的有关概念、性质及其应用。

  教学难点:

  探索等腰梯形的性质。

  教学过程设计:

  一、回顾——知识的连续和类比

  本章中已经研究了哪几种特殊四边形?

  二、创设问题情境——引出梯形概念

  观察一组图片,在图中有你熟悉的图形吗?

  三、探究:

  (一)看看学学——梯形的有关概念

  1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。一些基本概念(如图):底、腰、高。

  2、等腰梯形:两腰相等的梯形叫做等腰梯形。

  3、直角梯形:一腰和底垂直的梯形叫做直角梯形。

  (二)做一做――探索等腰梯形的性质(引入用轴对称解决问题的思想)

  在一张方格纸上作一个等腰梯形,连接两条对角线

  问题一:图中有哪些相等的线段?有哪些相等的角?这个图形是轴对称图形吗?学生画图并通过观察猜想;

  问题二:这个等腰梯形的两条对角线的长度有什么关系?

  结论:

  ①等腰梯形是轴对称图形,对称轴是连接两底中点的直线。

  ②等腰梯形同一底上的两个内角相等,两条对角线相等。

  (三)做一做,比一比——等腰梯形性质的简单应用

  1.如图1所示,在等腰梯形中∠B=70度,你能确定其他三个内角的度数吗?

  2.如图2所示,将等腰梯形ABCD的一条对角线BD平移到CE的位置,则图中有平行四边形吗?△CAE是等腰三角形吗?为什么?

  (四)议一议

  如图,四边形ABCD是等腰梯形,将腰AB平移到DE的位置。

  问题一:DE把四边形ABCD分成怎样的`两个图形?

  问题二:图中有哪些相等的线段,相等的角?

  注意:先让学生观看整个平移过程,使学生体会平移思想在研究梯形问题时的运用,然后再讨论完成问题。

  (五)讲解例1――等腰梯形性的运用

  如图,在等腰梯形ABCD中,AD=2,BC=4,高DF=2,求CF和腰DC的长。

  (目的:使学生学会用平移的思想解决有关梯形问题)

  (六)反思与小结

  1.我们今天学习了哪几种梯形?主要研究了哪一种梯形?

  2.等腰梯形有哪些性质?

  3.今天我们在研究梯形问题时用了哪些方法将梯形问题转化为其他图形的问题?

  梯形——初中数学第一册教案 2

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:

  PowerPoint演示文稿

  教学方法:

  启发法、

  学习方法:

  讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的'探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

  梯形——初中数学第一册教案 3

  一、教学目标:

  1.通过探究教学,使学生掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法,及其此判定方法的证明.

  2.能够运用等腰梯形的性质和判定方法进行有关的论证和计算,体会转化的思想,数学建模的思想,会用分析法寻求证明题思路,从而进一步培养学生的分析能力和计算能力.

  3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

  二、重点、难点

  1.重点:掌握等腰梯形的判定方法并能运用.

  2.难点:等腰梯形判定方法的运用.

  三、例题的意图分析

  本节课安排的例题与练习较多,可供老师们选用.

  例1是教材P119的例2,这是一道计算题,讲解时要让学生注意,已知中并没有给出等腰梯形的条件,它需要先判定梯形ABCD为等腰梯形,然后再用其性质得出结论.

  例2、例3、例4都是补充的题目.其中例2是一道文字题,这道题在进行证明时,可采用“平移对角线”或“作高”两种不同的方法,通过讲解例2,可以再次给学生介绍解决梯形问题时辅助线的添加方法.

  例3是一道证明等腰梯形的题,它需要先证明其四边形是梯形,即先证出EG∥AB,此时还要由AE,BG延长交于O,说明EG≠AB,才能得出四边形ABGE是梯形.然后再利用同底上的两角相等得出这个梯形是等腰梯形.选讲此题的目的是为了让学生了解和掌握证明一个四边形是等腰梯形的步骤与方法.

  例4是一道作图题,新教材P119的练习4就是一道画梯形图的题,此例4与练习4相同.通过此题的讲解与练习,就是要加强学生对梯形概念的理解,并了解梯形作图的一般方法.让学生知道梯形的'画图题,也常常是通过分析,找出需要添加的辅助线,先画出三角形或四边形,再根据它们之间的联系画出所要求的梯形.

  四、课堂引入

  1.复习提问:

  (1)什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?

  (2)等腰梯形有哪些性质?它的性质定理是怎样证明的?

  (3)在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?

  我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.

  2.【提出问题】:前面所学的特殊四边形的判定基本上是性质的逆命题.等腰梯形同一底上两个角相等的逆命题是什么?

  命题:同一底上的两个角相等的梯形是等腰梯形

  问:这个命题是否成立?能否加以证明,引导学生写出已知、求证.

  启发:能否转化为特殊四边形或三角形,鼓励学生大胆猜想,和求证.

  已知:如图,在梯形ABCD中,AD∥BC,∠B=∠C.

  求证:AB=CD.

  分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,命题就容易证明了.

  证明方法1:过点D作DE∥AB交BC于点F,得到△DEC.

  ∵AB∥DE, ∴∠B=∠1,

  ∵∠B=∠C, ∴∠1=∠C. ∴DE=DC.

  又∵AD∥BC, ∴DE=AB=DC.

  证明时,可以仿照性质证明时的分析,来启发学生添加辅助线DE.

  证明方法二:用常见的梯形辅助线方法:过点A作AE⊥BC, 过D作DF⊥BC,垂足分别为E、F(见图一).

  证明方法三: 延长BA、CD相交于点E(见图二). 图一 图二

  通过证明:验证了命题的正确性,从而得到:等腰梯形判定方法

  等腰梯形判定方法 在同一底上的两个角相等的梯形是等腰梯形.

  几何表达式:梯形ABCD中,若∠B=∠C,则AB=DC.

  【注意】等腰梯形的判定方法:①先判定它是梯形,②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.

  五、例、习题分析

  例1(教材P119的例2)

  例2(补充) 证明:对角线相等的梯形是等腰梯形.

  已知:如图,梯形ABCD中,对角线AC=BD.

  求证:梯形ABCD是等腰梯形.

  分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.在ΔABC和ΔDCB中,已有两边对应相等,要能证∠1=∠2,就可通过证ΔABC ≌ΔDCB得到AB=DC.

  证明:过点D作DE∥AC,交BC的延长线于点E,

  又 AD∥BC,∴ 四边形ACED为平行四边形, ∴ DE=AC .

  ∵ AC=BD , ∴ DE=BD ∴ ∠1=∠E

  ∵ ∠2=∠E , ∴ ∠1=∠2

  又 AC=DB,BC=CE, ∴ ΔABC≌ΔDCB. ∴ AB=CD.

  ∴ 梯形ABCD是等腰梯形.

  说明:如果AC、BD交于点O,那么由∠1=∠2可得OB=OC,OA=OD ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.

  问:能否有其他证法,引导学生作出常见辅助线,如图,作AE⊥BC,DF⊥BC,可证 RtΔABC≌RtΔCAE,得∠1=∠2.

  例3(补充) 已知:如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于G,F是垂足.求证:四边形ABGE是等腰梯形.

  分析:先证明OE=OG,从而说明∠OEG=45°,得出EG∥AB,由AE,BG延长交于O,显然EG≠AB.得出四边形ABGE是梯形,再利用同底上的两角相等得出它为等腰梯形.

  例4 (补充)画一等腰梯形,使它上、下底长分别4cm、12cm,高为3cm,并计算这个等腰梯形的周长和面积.

  分析:梯形的画图题常常通过分析,找出需添加的辅助线,归结为三角形或平行四边形的作图,然后,再根据它们之间的联系,画出所要求的梯形.

  如图,先算出AB长,可画等腰三角形ABE,然后完成 AECD的画图.

  画法:

  ①画ΔABE,使BE=12—4=8cm.

  ②延长BE到C使EC=4cm.

  ③分别过A、C作AD∥BC ,CD∥AE,AD、CD交于点D.

  四边形ABCD就是所求的等腰梯形.

  解:梯形ABCD周长=4+12+5×2=26cm .

  答:梯形周长为26cm,面积为24 .

  六、随堂练习

  1.下列说法中正确的是( ).

  (A)等腰梯形两底角相等

  (B)等腰梯形的一组对边相等且平行

  (C)等腰梯形同一底上的两个角都等于90度

  (D)等腰梯形的四个内角中不可能有直角

  2.已知等腰梯形的周长25cm,上、下底分别为7cm、8cm,则腰长为_______cm.

  3.已知等腰梯形中的腰和上底相等,且一条对角线和一腰垂直,求这个梯形的各个角的度数.

  4.已知,如图,在四边形ABCD中,AB>DC,∠1=∠2,AC=BD,求证:四边形ABCD是等腰梯形.

  (略证 ,AD=BC, ,∴ AB∥DC)

  5.已知,如图,E、F分别是梯形ABCD的两底AD、BC的中点,且EF⊥BC,求证:梯形ABCD是等腰梯形.

  七、课后练习

  1.等腰梯形一底角 ,上、下底分别为8,18,则它的腰长为______,高为______,面积是_________.

  2.梯形两条对角线分别为15,20,高为12,则此梯形面积为_________.

  3.已知:如图,在四边形ABCD中,∠B=∠C,AB与CD不平行,且AB=CD.求证:四边形ABCD是等腰梯形.

  4.如图4.9-9,梯形ABCD中,AB∥CD,AD=BC,CE⊥AB于E,若AC⊥BD于G.求证:CE= (AB+CD).

【梯形——初中数学第一册教案】相关文章:

中班数学梯形教案12-11

中班数学有趣的梯形教案01-07

认识梯形数学教案02-11

数学教案-梯形面积计算04-03

中班数学活动教案:梯形02-27

中班数学教案:梯形02-27

数学教案梯形面积计算07-06

中班数学认识梯形教案02-21

大班数学认识梯形教案11-25

认识梯形中班数学教案01-06