现在位置:范文先生网>教案大全>数学教案>五年级数学教案>小学五年级数学《分数与除法》教案

小学五年级数学《分数与除法》教案

时间:2025-01-16 14:59:55 晓凤 五年级数学教案 我要投稿

小学五年级数学《分数与除法》教案(通用15篇)

  作为一名默默奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?以下是小编收集整理的小学五年级数学《分数与除法》教案,欢迎阅读与收藏。

小学五年级数学《分数与除法》教案(通用15篇)

  小学五年级数学《分数与除法》教案 1

  教学目标:

  1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  3.培养学生的应用意识。

  教学重点:

  1.理解归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  教学准备:

  课件、圆片

  教学过程:

  一、复习引入

  师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)

  课件出示练习题

  (1)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?这道题把谁看作单位“1”?

  (2)把9个香蕉平均分成3份,每份是这些香蕉的几分之几?每份有几个?

  (3)把1包饼干平均分给2个人,每人分得(1/2)包。

  引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)

  二、探究新知

  课件出示习题

  (1)把18个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

  (2)把6个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

  师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成3份,求每份是多少。下面我们再来看一下这道题。

  出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?

  师:这道题该怎样列式呢?(学生列式,师板书:1÷3)

  师:1÷3表示什么意思?

  生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。

  师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

  生:1/3个。(师板书)

  师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

  教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的1/3。

  师:请大家看,每份都是1/3,每个人得到的是多少个蛋糕呢?

  生:1/3个。

  师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的蛋糕就是个。

  教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3个。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

  师:一个蛋糕平均分给3个人,我们知道了每人分得1/3个,现在要分一些其它的物品,你会吗?(课件出示例2)指名读题。

  师:谁能列出算式?

  生:3÷4(师板书)

  师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

  小组操作,教师巡视指导。

  师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

  (小组边汇报,边演示)

  小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

  师:你能用一个式子表示一下吗?

  小组1:1÷4=1/4块。

  师:好。请接着汇报吧。

  小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

  师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的`方法。(教师边叙述方法,边进行课件演示)

  师:还有没有和这组方法不同的?

  小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

  师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

  师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

  师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

  学生小组讨论

  生:我们发现,被除数就是分子,除数就是分母。

  师:你能试着表示出来吗?

  生:被除数÷除数=被除数/除数(师板书)

  师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

  生1:a÷b=a/b(师板书)

  生2:老师,我认为还要写上b≠0。

  师:为什么b≠0?

  生:因为b表示除数,除数不能为0。

  生:分数的分母也不能等于0。

  师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

  师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

  学生观察算式,思考生:可以。比如3/4=3÷4。

  课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子。反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。

  师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?请学生观察黑板算式,和同学讨论。

  学生汇报,教师总结:

  除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

  三、巩固练习

  1.用分数表示下列算式的商

  7÷13= 3÷11= 8÷5=

  9÷16= m÷n=

  2.试一试

  ()÷7=4/7 1÷()=1/3

  7/9=()÷9 5/8=()÷()

  3.把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

  4.填空(练习十二3题)

  5.把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

  四、全课总结

  小学五年级数学《分数与除法》教案 2

  教学内容:

  49~50页的内容及练习十二1~12题。

  教学目标:

  1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

  2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

  3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学难点:

  理解可以用分数表示两个数相除的商。

  教具准备:

  课件

  教学过程:

  一、复习导入

  1.表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

  2.把一根铁丝平均截成3段,每段的长度是这根铁丝的.几分之几,把谁看作单位“1”?

  3.引入:5除以9,商是多少?板书:5÷9

  如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

  二、新课讲授

  1.教学例1:出示题目

  (1)列出算式。(板书:1÷3=)

  (2)讨论:1除以3结果是多少?你是怎样想的?

  (3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的,就是个“1”。

  板书:1÷3=1/3(个)

  2.教学例2:出示题目

  (1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

  (2)口述方法及每份分得的结果,教师总结几种不同的分法。

  (3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的,即3个块,把3个块饼合起来就是1个饼的,即块,因此,3÷4=3/4(块)。

  由此可见,不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。

  学生相互说说表示的意义。

  3.教学分数与除法的关系。

  (1)观察1÷3=3÷4=这两道算式,

  想一想

  ①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?

  ②用分数表示商时,除式里的被除数,除数分别是分数里的什么?

  ③分数与除法的关系是怎样的?

  (2)总结三点

  ①分数可以表示除法的商。

  ②在表示除法的商时,要用除数作分母,被除数作分子。

  ③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式

  (3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示

  板书:a÷b=a/b(b≠0)

  (4)这里的b能为0吗?为什么?

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)

  (5)分数与除法有区别吗?区别在哪里?

  (分数是一种数,但也可以看作两个数相除,除法是一种运算)

  4.教学例3:出示题目

  (1)列出算式。板书:7÷10

  (2)怎样计算?。7÷10=

  三、巩固练习。

  1.做一做:独立完成,集体订正。

  2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。

  第3、4题:做在书上,集体订正。

  第5、6题:独立完成,订正时说一说是怎么想的。

  3.作业:练习十二7—11题,选作12题。

  四、课堂小结

  这节课学习了什么知识,你有哪些收获?

  板书设计:

  分数与除法

  例1:1÷3=1/3(个)

  例2:3÷4=3/4(个)

  例3:7÷10=7/10

  小学五年级数学《分数与除法》教案 3

  教学目标:

  1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。

  教学重点:

  1、掌握分数与除法的关系,会用分数表示除法的商。

  2、运用分数与除法的关系,正确进行假分数与带分数的互化。

  教学教法:

  为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的过程。

  教学过程:

  一、情境导入,引出新知。

  课件播放“分饼”情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出“除法”与“分数”这两个教学内容的主角。

  二、探究发现,归纳认知。

  1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习

  (1)、把a块饼平均分成8份,每份是多少块?

  (2)、把a块饼平均分成b份,每份是多少块?

  学生先写出除法算式,再用分数表示结果,教师板书

  1÷2=1/2块

  9÷4=9/4块

  a÷8=a/8块

  a÷b=a/b块

  通过这个练习完成从个别到一般的.思维过渡,为充分发现分数和除法的关系创造条件。

  2、归纳认知,明确关系。

  (1)、学生观察思考:分数和除法有怎样的关系?

  (2)、汇报发现。

  板书:被除数÷除数=

  (3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?

  学生讨论得出:分母不能为0。

  板书:(除数不为0)。

  3、尝试用字母表示。

  4、及时练习。

  2÷3= 8÷7= 16÷5= 10÷12=

  5/6=()÷() 13/15=()÷()

  12/7=()÷() 100/6=()÷()

  (二)假分数与带分数的互化。

  怎样把7/3化成带分数呢?怎样把2化成假分数?

  1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。

  2、检测合作学习效果。

  3、师做针对性点评。

  4、及时练习。

  课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。

  四、全课小结,学生谈收获。

  学生总结出本课的知识点,对本节课的学习形成一个完整的认识。

  板书设计:

  板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。

  小学五年级数学《分数与除法》教案 4

  教学内容:

  五年级下册教科书第65—66页。

  教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  教材分析:

  《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的`联系。

  本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

  教具学具:

  课件,模型。

  教学设计

  一、导入

  师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

  生:月饼。

  师:你们的课外知识真丰富,你们喜欢吃月饼吗?

  生:喜欢。

  师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

  生:2块,6÷3=2(块)。(板书)

  师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

  生:0.5块,1÷2=0.5(块)。(板书)

  师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

  师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

  生:七分之五。

  师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

  生:可以用分数表示。

  师:在表示整数除法的商时,用谁作分母?用谁做分子?

  生:用被除数作分子,除数作分母。

  师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

  生:被除数除以除数等于除数分之被除数。

  师:你表达得这么清晰流畅,了不起!

  师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

  生:a÷b=a/b(b≠0)(板书)

  师:这个关系式里每个数的范围要注意什么?

  生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

  师:想一想分数与除法有哪些联系和区别?

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

  二、巩固练习

  师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

  1.1.用分数表示下面各式的商。

  (1)3÷2 =( )

  (2)2÷9 =( )

  (3)7÷8 =( )

  (4)5÷12 =( )

  (5)31÷5 =( )

  (6)m÷n =( )n≠0

  2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

  的( )是相等的

  三、课堂小结

  说说你的收获是什么?重点说说分数与除法的关系。

  结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

  四、作业布置

  练习十二第1,3题。

  板书设计

  分数与除法

  被除数÷除数=被除数/除数

  a÷b=a/b(b≠0)

  教学反思

  这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

  小学五年级数学《分数与除法》教案 5

  教学目标

  (1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

  (2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。

  教学重点、难点

  理解分数与除法的关系。

  教具、学具准备

  教学过程

  一、复习铺垫

  1、口述下列分数的意义:

  1/44/57/9

  2、口答列式计算。

  (1)植树节有120名少先队员栽树,平均分成12个小组。每个小组有多少名少先队员?

  120÷12=10(人)

  (2)把12米长的钢管平均截成6段,每段长多少米?

  12÷6=2(米)

  归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。用除法计算。

  如果把(2)题的`12米改成1米,如何列式?

  1÷6

  它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。

  出示课题“分数与除法的关系”。

  二、教学新知

  1、教学例2。

  把1米长的钢管,平均截成6段,每段长多少米?

  (1)边作图边讲解。

  “1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。所以1÷6=1/6(米)

  (2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)

  2、教学例3。

  把3只月饼平均分成4份,每份是多少?

  教学过程

  备注

  (1)读题后指名学生列式:3÷4

  (2)边讲解边出示图式

  (3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。

  第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。

  得出3÷4=3/4(只):从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。

  3、归纳分数与除法的关系。

  (1)观察例2、例3的算式。

  1÷6=1/6(米)

  3÷4=3/4(只)

  (2)思考分数与除法有什么关系?

  (3)结论:

  被除数÷除数=被除数/除数

  (4)练一练:

  课本P75第1题。

  把分数改写成除法算式。

  4/7=()÷()21/25=()÷()

  14/27=()÷()7÷()=7/()

  讨论7÷()=7/()在括号里能填什么数?能否填任何数?为什么?

  结论:在除法中,除数不能为零。

  在分数中,分母不能为零。

  三、练习反馈

  1、7分米是几分之几米?

  23分钟是几分之几小时?

  学生独立练习后集中反馈,说一说思考过程。

  :“7分米是几分之几米”实际上是求7分米是1米(即10分米)的几分之几?同理,23分钟是几分之几小时也就是求23分钟是1小时(即60分钟0的几分之几,用除法计算。

  把低级单位的名数聚成高级单位的名数,用进率去除低级单位名数的数值,结果可以用分数表示。

  2、练一练:

  课本P76第5题填在书上。

  四、课堂练习

  课本P76第2、3、4题。

  五、课后作业《作业本》

  学生能理解分数与除法的关系,掌握两个自然数相除,可用分数表示。大部分学生能运用分数与除法的关系,把低级单位的名数聚成高级单位的名数。

  小学五年级数学《分数与除法》教案 6

  教学准备:

  教学目标:

  1、结合具体情境观察比较,理解分数与除法数的关系,会用分数来表示两数相除的商。

  2、运用分数与除法数的关系,探索假分数与带分数的互化方法,初步解解假分数与带分数互化的'算理,会正确进行互化。

  基本教学过程:

  一、创设情境,理解分数与除法的关系:

  1、出示题目:

  把1块蛋糕平均分给2个小朋友,每人可以得到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

  ①引导学生列出除法算式,并结合分数的意义得出结果从而得到两个关系式:

  1÷2=1/2

  7÷3=7/3

  二、自主探索:分数与除法的关系:

  ①引导学生观察比较这两组关系式:

  你发现分数与除法有什么关系?与同学说一说

  ②学生汇报自己的想法:

  ③师:分数与除法的关系式:

  ④生说一说关系式的意思:

  ⑤引导学生思考:分数的分母能不能是0?为什么?

  ⑥小组讨论:

  ⑦学生汇报:

  ⑧练一练:第36页第一题:

  三、探索假分数与带分数的互化方法:

  ①增加几道整数与带分数互化的题:

  小组讨论方法:

  学生汇报方法:

  ②假分数和带分数互化的题:

  怎样把7/3化成带分数?怎样把化成假分数?

  分组讨论方法:

  学生汇报方法:

  四、拓展练习:

  第37页第1、2、3、4、题

  小学五年级数学《分数与除法》教案 7

  教学目标:

  1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

  教学重点:

  理解分数与除法的关系。

  教学难点:

  理解分数表示整数除法的`商。

  课前准备:

  课件。

  教学过程:

  一、激活旧知,引发思考

  1.把8块饼平均分给4个小朋友,每人分得多少块?如果有4块饼呢?

  学生口答列式,教师板书。

  提问:这样的问题为什么用除法算?

  指出:把一些物体平均分,求每份是多少,用除法计算。

  2.引入新课

  二、主动思考,认识新知

  1.教学例2

  (1)把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?

  怎样列式?

  把1块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?

  每人分得的不满1块,结果可以用分数表示。

  那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?

  (2)学生操作,了解学生是怎样分和怎样想的。组织交流,你是怎么分的?

  (3)小结:把1块饼平均分给4个小朋友,每人分得14块。完成板书。

  2.教学例3:

  把3块饼平均分给4个小朋友,每人能分得多少块?

  可以怎样列式?3÷4得数是多少?

  大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?

  3.独立完成

  把3块饼平均分给5个小朋友,每人能分得多少块?

  3除以5,商是多少?怎样用分数表示?小组交流。

  4.总结归纳

  请大家观察上面两个等式,你发现分数与除法有什么关系?

  被除数÷除数=被除数/除数

  如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b

  讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)

  5.教学试一试。学生尝试填空。你是怎样想的?

  把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)

  6.做练一练第1、3题

  学生独立填写,要求说说填写时是怎样想的。

  7.做练一练的第2题

  学生填写后,引导比较:上下两行题目有什么不同?

  三、练习巩固,加深认识

  1,做练习八第6题

  让学生看图填空。

  交流:结果各是多少米?怎样从图上看出结果?

  追问:如果列式计算,应该怎样列式,得数是多少

  2.做练习八第7题。

  让学生独立完成,交流结果。

  3.做练习八第8题。

  让学生独立解答,交流方法板书。

  四、反思总结

  今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

  小学五年级数学《分数与除法》教案 8

  教学内容:

  《义务教育课程标准实验教科书数学五年级下册》第65~66页。

  教学目标:

  1.使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。

  2.通过动手操作,使学生理解3的就是1的。培养学生的分析、推理能力。

  教学重难点:

  3个饼的是多少个

  教学准备:

  圆形纸片、多媒体课件

  一、创设解决问题的情境,研究分数与除法的关系。

  (1)师:这是一个圆形纸片,把当作一个饼,如果要把6个饼平均分给3个人,每人分多少个,该怎样列式?

  6÷3=2

  如果要把1个饼平均分给2个人,每人分多少个,该怎样列式?

  如果要把1个饼平均分给3个人,每人分多少个,该怎样列式?

  如果要平均分给3个人,每人分多少个,该怎样列式?

  生①:1÷3=结果是多少个?(课件演示)

  师:每人分得1个饼的,就是个(板书)1÷3=(个)

  d)如果把3个饼平均分给4个人吃,每人吃多少个饼呢?怎样列式?

  生①:3÷4

  师:每个人手里都有3个纸片,以小组为单位,亲自剪一剪,拼一拼,看看结果是多少?(小组合作)

  交流

  生①:把每个人饼平均分成4份,每人吃一份,就吃了个。

  师:谁能给他们组的`想法提几个问题?

  a:你们是几个几个的分的?

  b:每人每次分得多少个饼?(个),c:分了几次,共分了多少个?(就是3个个就是个)

  d:怎样才能看出是个?

  师:谁是和他们分法一样的?还有更简单的分法吗?

  生②:把3个饼摞起来分,每人分一块,就是个。

  师:提出问题:

  a:现在是几个几个分的?

  b:每人分了这3个饼的几分之几?

  c:3个饼的就是多少个饼?

  d:怎么看出是个?(还得一个一个的摆)

  课件出示:把你们的想法在电脑里演示出来

  把3个饼一个一个的分,每人每次分得个个饼,分了3次,共分得3个个,就是个;

  也可以把3个饼摞起来一块分,每个人都分得了3个的,就是个(板书)3÷4=(个)

  二、借助学具,深化研究。

  课件演示好后:那么其他的除法是不是也可以用分数表示呢?

  1、如果把2个平均分给3个人,每人应该分得多少个?用学具分一分。

  生①:2÷3=(个)

  借助想象,巩固研究方法。

  刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5个饼平均分给8个人,每人分多少个吗?

  (5)刚才大家研究了分饼的问题,如果不借助学具你能计算7÷9的结果吗?()

  三、观察算式,概括分数与除法的关系。

  师:大家观察这些算式,看看你能发现什么?

  生①:分数的分子,相当于除法中的被除数,分母相当于除法中的除数。

  师:被除数÷除数=

  如果用a表示被除数,b表示除数,那么a÷b可以写成什么形式?

  大家还需要补充什么?(b≠0)

  师:刚才我们研究了分数与除法的联系,他们之间有区别吗?(小组讨论)

  生:除法是一种运算,而是一种具体的数量。

  小学五年级数学《分数与除法》教案 9

  设计说明

  本节课通过设置疑问,运用自主探索、合作探究等学习方式理解分数与除法的关系,运用此关系探索假分数与带分数的互化方法,理解假分数与带分数的互化算理,培养学生观察、比较、推理、归纳及交流的能力。本节课在教学设计上主要有以下两大特点:

  1.让学生在生活中感悟数学。

  从生活实际出发,从“分蛋糕”的情境入手,把教材内容与“数学现实”有机地结合起来,符合小学生的认知特点,可以消除学生对数学知识的陌生感,同时增强学生的数学应用意识,唤起学生对数学学习的兴趣。

  2.让学生体验成功的乐趣。

  数学课堂教学要着眼于学生的潜能和可发展性,充分相信学生,给学生提供充分的自主探索的时间与空间,鼓励学生自主地进行观察、实验、猜测、推理、验证、交流等数学活动(探索除法与分数的关系,探索假分数与带分数互化的方法),使学生在自主探索的过程中真正理解和掌握数学基础知识与基本技能、数学思想和方法,从而获得广泛的数学活动经验。

  课前准备

  教师准备 PPT课件

  学生准备 学具 三种颜色的纸条

  教学过程

  第1课时 分数与除法(一)

  ⊙设置疑问,导入课题

  1.下面各题的商可以分为哪几类?

  36÷6=6 4÷5=0.8 80÷5=16 5÷10=0.5

  3÷7=0.428571428571… 4÷9=0.4444…

  引导学生归纳分类:

  36÷6=6和80÷5=16的商为整数;

  4÷5=0.8和5÷10=0.5的商为有限小数;

  3÷7=0.428571428571…和4÷9=0.4444…的商为循环小数。

  2.师总结:两个自然数相除,不能整除的.时候,它们的商还可以用分数来表示。今天我们就来学习这部分内容。[板书:分数与除法(一)]

  设计意图:复习旧知,回顾所学知识的内在联系,引出课题。

  ⊙层层深入,探索分数与除法的关系

  1.出示问题,理解题意,列出算式。

  课件出示:把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?如果把7块蛋糕平均分给3个小朋友呢?

  师引导学生读题,提问(1):把1块蛋糕平均分给2个小朋友,可以写出怎样的算式?把7块蛋糕平均分给3个小朋友呢?

  预设 生:根据除法的意义,可以分别列式为1÷2和7÷3。

  提问(2):把1块蛋糕平均分给2个小朋友,每人分到几块蛋糕?把7块蛋糕平均分给3个小朋友呢?

  预设 生:每人分别可以分到块和块。

  提问(3):与1÷2之间是什么关系?与7÷3呢?

  (学生观察、讨论后可以明确:1÷2=,7÷3=)

  2.初步探索除法与分数的关系。

  师:观察1÷2=,7÷3=,说一说整数除法中被除数和除数与得数中的分子和分母存在着什么样的关系。

  (学生小组讨论交流,汇报)

  师生共同总结:任何一个分数都可以表示为分子除以分母,其中,分子相当于被除数,分母相当于除数。即:被除数÷除数=(除数不为0)。

  如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  质疑:这里的a和b是否可以是任意自然数?为什么?

  (不可以,这里的b≠0。在除法中,除数不能为0,所以在分数中,分母也不能为0。教师板书:b≠0)

  小学五年级数学《分数与除法》教案 10

  教学内容:

  教科书p1的例题、p2的想想做做1-5。

  教学目的:

  1、经历整十数除以一位数的口算和非整十的两位数除以一位数的口算、笔算方法的探索过程,能口算整十数除以一位数(商为整十数),会笔算两位数除以一位数(首位能整除)。

  2、培养学生初步的观察力、动手操作能力和积极参与学习活动的情趣。

  3、在解决问题的过程中学会有条理地思考,体验数学与日常生活的.联系,进一步发展解决问题的策略,增强应用数学的意识。

  教学重点:

  两位数除以一位数口算和笔算方法的探讨。

  教学难点:

  引导学生理解商的位置,掌握两位数除以一位数的笔算格式。

  教具准备:

  46根小棒,课件。

  教学过程:

  一、温故而知新:

  1、口答:

  (1)30平均分成5份,每份是多少?

  (2)24里面有几个8?

  (3)20里面有几个十?

  (4)48是由几个十和几个一组成的?

  (5)4个20是多少?2、解决问题:

  师:快开学了,同学们都在积极准备学习用品。有两个同学一共买了16枝铅笔,平

  均每个同学买了多少枝?

  问:怎样列式?你是怎样算的?会用竖式计算吗?

  3、谈话:那边还有两组同学在买铅笔呢,今天我们就一起来研究买铅笔中的数学问题

  吧。

  二、自主探究、学习新知:

  1、教学整十数除以一位数。

  (1)课件出示:情景图左半部分。

  ①问:从这两个男孩的对话中你知道了什么?可以解决什么问题?

  把结果填在书上。

  ④组织全班交流。

  个十除以2等于2个十,2个十就是20。

  捆小棒平均分成2份,每份是2捆,就是20。

  (2)完成“想想做做”第1题:

  ①让学生独立完成。

  ②问:你在做题时是横着做的还是竖着做的?为什么竖着做?

  让学生比较每组上下两题在计算上的联系和区别,帮助学生形成算

  哪里?

  ②独立完成后两题,集体订正。

  ③问:每次两题之间有什么联系?有什么区别?引导学生注意余数。

  你认为除法笔算要注意什么?

  三、巩固深化、拓展提高:

  师:在买铅笔的过程中我们学会了相应的口算和笔算,下面就运用所学的知识去解

  决一些实际问题吧。

  1、完成“想想做做”的第4题:

  (1)让学生仔细看图:从图中知道了什么,要求什么?

  (2)独立解答。

  (3)集体交流。

  2、完成“想想做做”的第5题:

  (1)从图中你知道了什么?需要解决什么问题?要知道哪种树苗每棵的价钱贵

  一些。你打算怎么办?

  (2)学生独立解答,全班交流:

  预设:

  贵一些。

  解法二:由图中的信息知道,杨树苗买的棵数多用的钱数少;

  棵数少用的钱数多。所以杨树苗每棵的价钱贵一些。

  四、全课总结、内化新知:

  这节课学习了什么?(板书课题)有什么要提醒大家吗?

  五、当堂作业:

  想想做做第3题。

  六、教学后记:

  小学五年级数学《分数与除法》教案 11

  教学内容:

  教材第29-30页的内容。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。

  2.探索并掌握分数除以整数的计算方法,并能正确计算。

  3.能够运用分数除以整数解决简单的实际问题。

  教学重点:

  分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。

  教学难点:

  运用分数除以整数解决简单的实际问题。

  教具准备:

  多媒体课件

  预习提纲:

  1.观察课本第29页的图,从中你能获得哪些数学信息呢?

  2.根据这些数学信息你能提出哪些问题?

  3.分析例题,写出等量关系,并试用方程解答。

  4.想想还有别的算法吗?

  教学过程:

  一、创设情境,引发探究

  1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?

  2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?

  (1)打篮球的人数是踢足球的4/9.

  (2)踢毽子的'人数是踢足球的1/3.

  (3)跳绳的人数是参加活动总人数的2/9.

  ……

  二、提出问题,自主探究

  1.根据这些数学信息你能提出哪些问题?

  操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?

  列出这题的等量关系,并解答。全班交流。

  2.还能提出哪些数学问题,引出例题

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?

  这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?

  你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。

  解:设操场上有x人参加活动。

  χ×2/9=6

  χ×2/9÷2/9=6÷2/9

  χ×=27

  3.想一想,还有别的算法吗?怎么算?为什么?

  6÷2/9=27(人)

  三、巩固练习,实践探究

  刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?

  1.操场上打篮球的有4人。

  (1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?

  (2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?

  (3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?

  (4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。

  2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?

  (板演过程中,着重分析学生可能存在的误解之处。)

  3.根据以下方程,编出相应的应用题。

  χ×1/5=30 χ×2/3=40

  四、回顾反思,总结全课。

  通过这节课的学习你有哪些收获?

  小学五年级数学《分数与除法》教案 12

  教学内容:

  教材第29~30页“分数除法(三)”。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

  2.在解方程中,巩固分数除法的计算方法。

  教学重难点:

  1.能够体会方程是解决实际问题的重要模型。

  2.能够用方程解决实际问题。

  教学过程:

  一、创设情景激趣揭题

  1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

  2.引入并板书课题。

  二、扶放结合探究新知

  1.根据这些数学信息,你能提出哪些数学问题?

  2.引导学生逐一解答提出的问题。

  3.重点引导:跳绳的'有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

  4.引导观察,找出有什么相同点和不同点?

  三、反馈矫正落实双基

  1.指导完成P29的试一试的1,2题。

  2.你能根据方程

  X×1/5=30

  编一道应用题吗?

  3.请你想一个问题情景,遍一道分数应用题。

  四、小结评价布置预习

  1.引导小结

  通过本节课的学习你有哪些收获?

  2.布置预习

  整理前面所学知识。

  板书设计:

  分数除法(三)

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

  参加活动总人数×2/9=跳绳的人数

  解:设操场有X人参加活动。

  小学五年级数学《分数与除法》教案 13

  一、提出问题。

  1、谈话导入:最近我们一直在学习有关小数的计算问题。下面进行几轮计算比赛。

  第一轮:看谁算得对。

  第二轮:看谁算得巧。

  让学生说说是怎么算的,运用了哪些运算律。

  教师小结:在整数乘法中,我们运用乘法的一些运算律,可以使计算简便。

  2、提出问题:整数乘法中的运算律,对小数乘法是否适用呢?

  学生猜想。

  (设计意图:小数乘法和加减法的口算,是进行小数简算的重要基础,所以基本技能的训练也是必不可少的。以竞赛的形式进行练习,可以激发学生的兴趣。看谁算得巧的活动可以帮助学生调动起原有的整数乘法运算律的知识经验,并大胆猜想整数乘法中的运算律,对小数乘法是否适用。)

  二、观察验证。

  1、教师提出验证要求:同学们的猜想是否成立呢,需要我们举例来验证。

  出示几组算式,提出要求:先算一算,下面的○里能填上等号吗?

  (1)学生计算,汇报结果,发现每组的两个算式结果相等,可以用等号连接。

  (2)观察每组的两个算式有什么关系?

  学生发现:第一组两个算式中,两个小数相乘,交换两个因数的位置,结果相等,符合乘法交换律。

  第二组的两个算式中都是三个小数相乘,左边先把前两个小数相乘,再乘第三个小数,右边先把后两个小数相乘,再和第一个小数相乘,结果相等,符合乘法结合律。

  第三组左边是把两个数的和乘一个数,右边是把这两个数分别乘以这个数,再把两个积相加,结果也相等,符合乘法分配律。

  (3)乘法的这些运算律是否在小数乘法中普遍适用呢,小组合作,再例举几组有这样关系的算式,通过计算来验证一下。

  (4)交流发现:整数乘法的运算律,对小数乘法也同样适用。

  (5)揭示课题:今天这节课我们就来研究“乘法运算律的推广和运用”。

  (设计意图:让学生充分经历观察、举例、再观察、发现的验证的过程,不但使学生经历形成数学知识的过程,还能使学生感受到数学结论的科学性和严密性,培养学生严谨的认知态度。)

  三、实际运用

  1、谈话:乘法的这些运算律在小数乘法中有什么用呢?

  2、试一试:下面各题怎样计算比较简便?(1)学生尝试计算

  (2)交流计算方法,让学生说说运用了什么运算律。= =128+ =

  (3)教师小结:看到算式,首先要观察数据特点,再根据数据和算式特点,合理运用乘法运算律,使计算简便。

  3、练一练:用简便方法计算。

  (1)学生尝试计算。

  (2)交流计算方法。让学生说说是怎样运用运算律进行简算的。

  3、运用乘法交换律,还可以对小数乘法进行验算

  二、教学思路

  本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法。

  理解除数是小数的除法的计算法则的算理是“商不变的性质”和“小数点位置移动引起小数大小变化的规律”,把除数是小数的除法转化成除数是整数的除法后就用“除数是整数的小数除法”计算法则进行计算。3、试做例题,掌握转化方法

  明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:

  ①、学生试做例题6例题7,并讲出每个例题小数点移位的方法。

  ②、学生试做例8

  ③、引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:

  (1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。

  (2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。

  三、教学重点难点及解决策略

  教学重点:会笔算除数是整数的小数除法。

  教学难点:商的小数点为什么要与被除数的小数点对齐?个位不够商1,怎么办?

  解决策略:通过学生对商的估算,把估算值与精确值对比,知道被除数里有几个除数,商的整数部分就商几,商的整数部分的右下角点上小数点,余数的后面补0继续除;个位不够商1,就要在商的个位上写0,在0的右下角点上小数点继续往下除。

  突破重难点的关键点:

  理解商的小数点要与被除数的小数点对齐的道理。

  教学过程

  (一)复习导入

  1、要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动?

  2、把下面的数分别扩大10倍、100倍、1000倍是多少?15。

  3、填写下表。

  根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。)

  根据商不变的性质填空,并说明理由。

  (该环节的`设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000倍……被除数也应扩大同样的倍数。)

  (二)探究算理归纳法则

  1、学习例6:

  一根钢筋长米,如果把它截成米长的小段。可以截几段?

  (2)揭示课题:

  这个算式与我们以前学习的除法有什么不同?(除数由整数变成了小数。)

  今天我们一起来研究“一个数除以小数”。(板书课题:一个数除以小数。)

  (3)探究算理。

  ①思考:我们学习了除数是整数的小数除法,现在除数是小数该怎样计算呢?

  (把除数转化成整数。)

  怎样把除数转化成整数呢?

  ②学生试做:

  板演学生做的结果,并由学生讲解:

  解法1:把单位名称“米”转换成厘米来计算。

  解法2:

  答:可以截成9段。

  讲算理:(为什么把被除数、除数分别扩大10倍?)

  把除数转化成整数4,扩大了10倍。根据商不变的性质,要使商不变,被除数也应扩大10倍是36。

  小结:这道题我们可以通过哪些方法把除数转化成整数?

  (①改写单位名称;②利用商不变的性质。)

  (3)练习:完成例7

  思考:你用哪种方法转化?为什么?

  同桌互相说说转化的方法及道理。独立计算后,订正。例7里的余数15表示多少?

  强调:利用商不变的性质,把被除数和除数同时扩大多少倍,由哪个数的小数位数决定?

  (设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)

  2、学习例8:买千克油用元。每千克油的价格是多少元?

  (1)要把除数变成整数,怎样转化?(把除数扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)

  (2)被除数扩大100、倍是多少?(扩大100、倍是330,小数部分位数不够在末尾补“0”。)

  (3)学生试做:

  (4)比较例6.7与例8有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)

  (5)练习:课本p49练一练第三题学生独立完成后,归纳小结。

  (设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题,启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。让学生在充分积累经验的基础上归纳出除数是小数的除法的计算法则,会收到水道渠成的效果)

  (三)展开练习深化认识

  1、(1)不计算,把下面各式改写成除数是整数的算式。

  (2)下面各式错在哪里,应怎样改正?

  3、(3)选出与各组中商相等的算式。

  4、口算:

  (设计意图:旨在通过各种形式的练习提高学生学习兴趣,巩固法则,强化重点,突破难点)

  (四)回顾总结

  思考:除数是小数的除法应怎样计算?讨论得出(填空):除数是小数的除法的计算法则是:除数是小数的除法,先移动的小数点,使它变成;除数的小数点向右移动几位,被除数的小数点也()移动()(位数不够的,在被除数的()用“0”补足);然后按照除数是的小数除法进行计算。看书p46--49,划出重点词语。

  小学五年级数学《分数与除法》教案 14

  教学目标:

  1、知识目标:体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  2、能力目标:培养学生动手动脑能力,以及判断、推理能力。

  3、情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  教学重点:

  能求一个数的倒数。

  教学难点:

  分数除以整数计算法则的推导过程。

  教学准备:

  长方形纸片。

  教学过程:

  一、创设情景,教学分数除法的意义

  1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

  (1)每人吃1/2块饼,4个人共吃多少块饼?

  (2)把2块饼平均分给4个人,每人吃了多少块饼?

  (3)有2块饼,分给每人1/2块,可分给几个人?

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  师:讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1) 引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的`4/7。

  师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

  请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

  方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

  师:对这种做法大家有什么疑问吗?

  生:这儿是除法怎么变成了乘法?

  师:老师也有这个疑问,你能讲讲吗?

  师:谁能结合图来讲一讲呢?

  师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为: 上一题的时候,分子4是2的倍数,4÷2能得到整数商。而 4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

  能再讲讲这样做的道理吗?

  师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/7的多少?

  通过直观图理解4/7的1/3是4/21

  (3)比较归纳,发现规律。

  ①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

  ②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

  ③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

  小组活动,说算法。

  ④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

  出示:分数除以整数,等于分数乘这个整数的倒数。

  还有需要注意的地方吗?

  生:有,除数不能为0。

  师:谁能把分数除以整数的计算法则用自己的话来说一说?

  完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

  ⑥那象这样的分数除以整数的题目在计算时要注意些什么?

  生:要约分!结果最简。除号要变成乘号!

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

  板书设计:

  分数除以整数

  小学五年级数学《分数与除法》教案 15

  教学内容:

  教材第25~26页的内容及练习。

  教学目标:

  1.在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2.探索并掌握分数除以整数的计算方法,并能正确计算。

  3.能运用分数除以整数的'计算方法解决实际问题。

  教学重难点:

  1.探索并理解分数除法的意义。

  2.探索并掌握分数除以整数的计算方法,能正确计算。

  教学过程:

  一、创设情景激趣揭题

  1.引导操作:出示一张7等份的纸,让学生涂一涂,用它表示一个分数。

  2.引入并板书课题:分数除法(一)

  二、扶放结合探究新知

  1.提问:如果把这张纸的4/7平均分成2份,每份是多少?

  2.把这张纸的4/7平均分成3份,又该怎样解决?

  3.引导归纳分数除以整数的意义及计算方法。

  4.想一想;整数除法也有类似的规律吗?

  5.填一填,验证猜想。

  1÷4 1×1/4

  7÷3 7×1/3

  三、反馈矫正落实双基

  1.出示26页试一试。

  2.指导完成26页练一练的1~3题。

  四、小结评价布置预习

  1.引导小结

  (1)这节课我们学习了什么知识?

  (2)还有什么问题?

  2.布置预习:27~28分数除法(二)

  板书设计:

  分数除法(一)

  4/7÷2=4/7×1/2=2/7

  4/7÷3=4/7×1/3=4/21

  分数除以整数的意义,与整数除法的意义相同。

  计算法则:分数除以整数(零除外),等于乘这个整数的倒数

【小学五年级数学《分数与除法》教案】相关文章:

小学数学分数与除法教案11-22

数学《分数除法》教案01-31

小学数学五年级教案:《分数与除法》04-04

小学五年级数学《分数与除法》教案06-07

小学五年级数学《分数与除法》教案(经典)06-18

[精]小学五年级数学《分数与除法》教案07-23

(热)小学五年级数学《分数与除法》教案06-17

数学《分数除法》教案(精选20篇)06-21

数学《分数除法》教案15篇01-31

小学五年级数学分数除法教案08-30