现在位置:范文先生网>教案大全>数学教案>高一数学上册教案

高一数学上册教案

时间:2025-06-12 18:11:06 银凤 数学教案 我要投稿

人教版高一数学上册教案(精选6篇)

  作为一位杰出的教职工,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。快来参考教案是怎么写的吧!下面是小编整理的人教版高一数学上册教案,仅供参考,大家一起来看看吧。

人教版高一数学上册教案(精选6篇)

  高一数学上册教案 1

  教学目标:

  (1)了解集合的表示方法;

  (2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  教学重点:

  掌握集合的表示方法;

  教学难点:

  选择恰当的表示方法;

  教学过程:

  一、复习回顾:

  1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

  二、新课教学

  (一).集合的表示方法

  我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…

  说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考

  虑元素的顺序。

  2.各个元素之间要用逗号隔开;

  3.元素不能重复;

  4.集合中的'元素可以数,点,代数式等;

  5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为

  例1.(课本例1)用列举法表示下列集合:

  (1)小于10的所有自然数组成的集合;

  (2)方程x2=x的所有实数根组成的集合;

  (3)由1到20以内的所有质数组成的集合;

  (4)方程组 的解组成的集合。

  思考2:(课本P4的思考题)得出描述法的定义:

  (2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。

  具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…

  说明:

  1.课本P5最后一段话;

  2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3xx2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{xx整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  例2.(课本例2)试分别用列举法和描述法表示下列集合:

  (1)方程x2—2=0的所有实数根组成的集合;

  (2)由大于10小于20的所有整数组成的集合;

  (3)方程组 的解。

  思考3:(课本P6思考)

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (二).课堂练习:

  1.课本P6练习2;

  2.用适当的方法表示集合:大于0的所有奇数

  3.集合A={x| ∈Z,x∈N},则它的元素是 。

  4.已知集合A={x|-3

  归纳小结:

  本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。

  作业布置:

  1. 习题1.1,第3.4题;

  2. 课后预习集合间的基本关系.

  高一数学上册教案 2

  教学目标

  会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

  重 点

  函数单调性的证明及判断。

  难 点

  函数单调性证明及其应用。

  一、复习引入

  1、函数的定义域、值域、图象、表示方法

  2、函数单调性

  (1)单调增函数

  (2)单调减函数

  (3)单调区间

  二、例题分析

  例1、画出下列函数图象,并写出单调区间:

  (1) (2) (2)

  例2、求证:函数 在区间 上是单调增函数。

  例3、讨论函数 的单调性,并证明你的结论。

  变(1)讨论函数 的单调性,并证明你的结论

  变(2)讨论函数 的单调性,并证明你的结论。

  例4、试判断函数 在 上的单调性。

  三、随堂练习

  1、判断下列说法正确的是 。

  (1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;

  (2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;

  (3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;

  (4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的.单调增函数。

  2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函数 在 上是___ ___;函数 在 上是__ _____。

  3.下图分别为函数 和 的图象,求函数 和 的单调增区间。

  4、求证:函数 是定义域上的单调减函数。

  四、回顾小结

  1、函数单调性的判断及证明。

  课后作业

  一、基础题

  1、求下列函数的单调区间

  (1) (2)

  2、画函数 的图象,并写出单调区间。

  二、提高题

  3、求证:函数 在 上是单调增函数。

  4、若函数 ,求函数 的单调区间。

  5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。

  三、能力题

  6、已知函数 ,试讨论函数f(x)在区间 上的单调性。

  变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。

  高一数学上册教案 3

  教学 目标

  1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项、

  (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的、

  (2)了解数列的各种表示方法,理解通项公式是数列第 项 与项数 的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式、

  (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项、

  2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力、

  3、通过由 求 的过程,培养学生严谨的科学态度及良好的思维习惯、

  教学 建议

  (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等、

  (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系、在 教学 中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列、函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法、由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法??递推公式法、

  (3)由数列的通项公式写出数列的前几项是简单的代入法, 教师 应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的'学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助、

  (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用 来调整等、如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系、

  (5)对每个数列都有求和问题,所以在本节课应补充数列前 项和的概念,用 表示 的问题是重点问题,可先提出一个具体问题让学生分析 与 的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调 的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况、

  (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的、

  教学 设计示例

  数列的概念

  教学 目标

  1、通过 教学 使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项、

  2、通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想、

  3、通过有关数列实际应用的介绍,激发学生学习研究数列的积极性、

  教学 重点,难点

  教学 重点是数列的定义的归纳与认识; 教学 难点是数列与函数的联系与区别、

  教学 用具: 电脑,课件(媒体资料),投影仪,幻灯片

  教学 方法: 讲授法为主

  教学 过程

  一、揭示课题

  今天开始我们研究一个新课题、

  先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律、实际上我们要研究的是这样的一列数

  ( 板书 ) 象这样排好队的数就是我们的研究对象??数列、

  ( 板书 )第三章 数列

  (一)数列的概念

  二、讲解新课

  要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:

  (幻灯片)

  ①

  自然数排成一列数:

  ②

  3个1排成一列:

  ③

  无数个1排成一列:

  ④

  的不足近似值,分别近似到 排列起来:

  ⑤

  正整数 的倒数排成一列数:

  ⑥

  函数 当 依次取 时得到一列数:

  ⑦

  函数 当 依次取 时得到一列数:

  ⑧

  请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数、

  ( 板书 )1、数列的定义:按一定次序排成的一列数叫做数列、

  为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出)、以上述八个数列为例,让学生练习了指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数、

  由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定、所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系、

  ( 板书 )2、数列与函数的关系

  数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集 ,或是正整数集 的有限子集 、

  于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列、

  遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法、

  ( 板书 )3、数列的表示法

  数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法、相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用 表示第一项,……,用 表示第 项,依次写出成为

  ( 板书 )(1)列举法

  (如幻灯片上的例子)简记为

  一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法、

  ( 板书 )(2)图示法

  启发学生仿照函数图象的画法画数列的图形、具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数、从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势、

  有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即 ,这个函数式叫做数列的通项公式、

  ( 板书 )(3)通项公式法

  如数列 的通项公式为 ;

  的通项公式为 ;

  的通项公式为 ;

  数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示、通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项、

  例如,数列 的通项公式 ,则 、

  值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一、

  除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式、

  ( 板书 )(4)递推公式法

  如前面所举的钢管的例子,第 层钢管数 与第 层钢管数 的关系是 ,再给定 ,便可依次求出各项、再如数列 中, ,这个数列就是 、

  像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式、递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可、

  可由学生举例,以检验学生是否理解、

  三、小结

  1、数列的概念

  2、数列的四种表示

  四、作业? 略

  五、 板书 设计

  数列

  (一)数列的概念 涉及的数列及表示

  1、数列的定义

  2、数列与函数的关系

  3、数列的表示法

  (1)列举法

  (2)图示法

  (3)通项公式法

  (4)递推公式法

  探究活动

  将边长为 厘米的正方形分成 个边长为1厘米的正方形,数出其中所有正方形的个数、

  解:当 时,共有正方形 个;当 时,共有正方形 个;当 时,共有正方形 个;当 时,共有正方形 个;当 时,共有正方形 个;归纳猜想边长为 厘米的正方形中的正方形共有 个、

  高一数学上册教案 4

  一、目的要求

  结合集合的图形表示,理解交集与并集的概念。

  二、内容分析

  1.这小节继续研究集合的运算,即集合的交、并及其性质。

  2.本节课的重点是交集与并集的概念,难点是弄清交集与并集的概念,符号之间的区别与联系。

  三、教学过程

  复习提问:

  1.说出A的意义。

  2.填空:如果全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么,

  a=,B=。

  (A={0,2,4},B={0,2,3,5})

  新课讲解:

  1.观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?

  2.定义:

  (1)交集:A∩B={x∈A,且x∈B}。

  (2)并集:A∪B={x∈A,且x∈B}。

  3.讲解教科书1.3节例1-例5。

  组织讨论:

  观察下面表示两个集合A与B之间关系的.5个图,根据这些图分别讨论A∩B与A∪B。

  (2)中A∩B=φ。

  (3)中A∩B=B,A∪B=A。

  (4)中A∩B=A,A∪B=B。

  (5)中A∩B=A∪B=A=B。

  课堂练习:

  教科书1.3节第一个练习第1~5题。

  拓广引申:

  在教科书的例3中,由A={3,5,6,8},B={4,5,7,8},得

  a∪B={3,5,6,8}∪{4,5,7,8}

  ={3,4,5,6,7,8}

  我们研究一下上面三个集合中的元素的个数问题。我们把有限集合A的元素个数记作card(A)=4,card(B)=4,card(A∪B)=6.

  显然,

  Card(A∪B)≠card(A)+card(B)

  这是因为集合中的元素是没有重复现象的,在两个集合的公共元素只能出现一次。那么,怎样求card(A∪B)呢?不难看出,要扣除两个集合的公共元素的个数,即card(A∩B)。在上例中,card(A∩B)=2。

  一般地,对任意两个有限集合A,B,有

  Card(A∪B)=card(A)+card(B)-card(A∩B)。

  四、布置作业

  1.教科书习题1.3第1~5题。

  2.选作:设集合A={x|-4≤x<2},B={-1

  求A∩B∩C,A∪B∩C。

  (A∩B∩C={-1

  高一数学上册教案 5

  一、教材分析

  1、 教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

  2、 教学目标及确立的依据:

  教学目标:

  (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

  (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二. 新课讲授:

  (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

  并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的`映射)。

  再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。

  3. f表示对应关系,在不同的函数中f的具体含义不一样。

  4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  5. 集合a中的数的任意性,集合b中数的唯一性。

  66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

  三.讲解例题

  例1.问y=1(x∈a)是不是函数?

  解:y=1可以化为y=0*x+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导从集合,映射的观点认识函数的定义。

  四.课时小结:

  1. 映射的定义。

  2. 函数的近代定义。

  3. 函数的三要素及符号的正确理解和应用。

  4. 函数近代定义的五大注意点。

  五.课后作业及板书设计

  书本p51 习题2.1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

  函数(一)

  一、映射:

  2.函数近代定义: 例题练习

  二、函数的定义 [注]1—5

  1.函数传统定义

  三、作业:

  高一数学上册教案 6

  一、教材

  《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

  二、学情

  学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

  三、教学目标

  (一)知识与技能目标

  能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

  (二)过程与方法目标

  经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的`逻辑思维能力。

  (三)情感态度价值观目标

  激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

  四、教学重难点

  (一)重点

  用解析法研究直线与圆的位置关系。

  (二)难点

  体会用解析法解决问题的数学思想。

  五、教学方法

  根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

  六、教学过程

  (一)导入新课

  教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

  教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

  设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

  (二)新课教学——探究新知

  教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

  判断方法:

  (1)定义法:看直线与圆公共点个数

  即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

  (2)比较法:圆心到直线的距离d与圆的半径r做比较,

  (三)合作探究——深化新知

  教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

  已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

  让学生自主探索,讨论交流,并阐述自己的解题思路。

  当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

  (四)归纳总结——巩固新知

  为了将结论由特殊推广到一般引导学生思考:

  可由方程组的解的不同情况来判断:

  当方程组有两组实数解时,直线l与圆C相交;

  当方程组有一组实数解时,直线l与圆C相切;

  当方程组没有实数解时,直线l与圆C相离。

  活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

  (五)小结作业

  在小结环节,我会以口头提问的方式:

  (1)这节课学习的主要内容是什么?

  (2)在数学问题的解决过程中运用了哪些数学思想?

  设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

  作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

  七、板书设计

  我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

【高一数学上册教案】相关文章:

高一数学上册教案02-12

高一上册数学教案08-27

高一政治上册教案08-05

高一上册数学教案优选【4篇】10-21

(推荐)高一上册数学教案6篇10-31

高一的数学下教案02-07

人教版数学上册教案05-08

高一数学教案11-08

高一数学集合教案08-28

关于高一数学的教案10-21