七年级数学下册教案【集合15篇】
作为一名人民教师,就难以避免地要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。快来参考教案是怎么写的吧!以下是小编精心整理的七年级数学下册教案,欢迎阅读,希望大家能够喜欢。

七年级数学下册教案1
教学目标:
1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。
2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。
3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。
教学重点:
1.概率的定义及简单的列举法计算。
2.应用概率知识解决问题。
教学难点:灵活应用概率的计算方法解决各种类型的实际问题。
教学过程:
一、复习旧知
1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,
不可能事件的有 ,必然事件有 ,不确定事件有 。
2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;
3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。
4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?
5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?
求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。
二、情境导入
1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?
2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。
(1)会出现哪些可能的结果?
(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?
学生分组讨论,教师引导
三、探究新知
1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?
学生分组讨论,教师引导:
(1)一次试验可能出现的结果是有限的;
(2)每种结果出现的可能性相同。
设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。
2、探究等可能性事件的概率
(1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?
(2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?
学生先独立思考,然后同桌间讨论,教师巡视指导
一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:
P(A)=/n
必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1
3、应用新知
例:任意掷一枚均匀骰子。
1.掷出的点数大于4的概率是多少?
2.掷出的点数是偶数的概率是多少?
解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的.可能性相等。
1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.
所以P(掷出的点数大于4)=2/6=1/3
2.掷出的点数是偶数的结果有3种:掷出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=3/6=1/2
四、实践练习
1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?
2、先后抛掷2枚均匀的硬币
(1)一共可能出现多少种不同的结果?
(2)出现“1枚正面、1面反面”的结果有多少种?
(3)出现“1枚正面、1面反面”的概率有多少种?
(4)出现“1枚正面、1面反面”的概率是1/3,对吗?
3、将一个均匀的骰子先后抛掷2次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的数之和分别是5的结果有多少种?
(3)向上的数之和分别是5的概率是多少?
(4)向上的数之和为6和7的概率是多少?
五、课堂检测
1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )
A 2/9 B 1/3 C 4/9 D以上都不对
2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )
A 0.34 B 0.17 C 0.66 D 0.76
3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )
A 3/10 B 7/10 C 2/5 D 3/5
4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是
5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=
P(摸到白球)=
P(摸到黄球)=
6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?
六、课堂小结
回想一下这节课的学习内容,同学们自己的收获是什么?
1、等可能性事件的特征:
(1)一次试验中有可能出现的结果是有限的。(有限性)
(2)每种结果出现的可能性相等。(等可能性)
2、求等可能性事件概率的步骤:
(1)审清题意,判断本试验是否为等可能性事件。
(2)计算所有基本事件的总结果数n。
(3)计算事件A所包含的结果数。
(4)计算P(A)=/n。
布置作业:
1、P148习题6.4知识技能 1.2.3
2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。
板书设计
等可能事件的概率(1)
等可能事件的特征:
1、 一次试验可能出现的结果是有限的;
2、 每一结果出现的可能性相等。
一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:
七年级数学下册教案2
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3通、过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的下面作一个小练习,填空:
1、( )2=9;
2、( )2 =0.25;
3、( )2=0.0081。
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根。
由此我们看到3与—3均为9的.平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2、0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到3与—3的平方是9,9的平方根是3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:
1、用正确的符号表示下列各数的平方根:
①26
②247
③0.2
④3
⑤
解:①26的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤的平方根是
七年级数学下册教案3
第一章 一元一次不等式组
1.1 一元一次不等式组
第1教案
教学目标
1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点
1..不等式组的`解集的概念。
2.根据实际问题列不等式组。
教学方法
探索方法,合作交流。
教学过程
一、 引入课题:
1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、 探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、 抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)
七年级数学下册教案4
复习目标:
1、复习基本概念形成知识体系;
2、会利用图形的分割法求图形的面积。
复习过程:
一、板书课题,出示目标:
同学们,今天,我们一起来复习第六章,本节课的学习目标是:
二、指导检测:
复习目标达到,从认真做检测题开始,下面,请看检测要求:
检测指导
1.认真审题,细心计算;
2. 把字写端正,步骤写完整;
3. 在十五分钟内完成。
预祝大家出色完成任务!
三、学生检测,教师巡视
A:P58“知识结构图”,完成P60 4、5
B:学生检测,教师巡视,搜集学生出现的错误,进行第二次备课。
四、板演、更正答案:
A:分别让2名学生上堂板演,有错误,鼓励其他同学更正。
B:对改(下面,比谁能在2分钟内对改完,不出错)
五、讨论:
1.独立更正:
2.小组讨论:(自己不能独立更正的.题,小组解疑)
3.可能出现错误,需要集体讨论:(会了的小组帮助不会的小组解疑,若没有不同答案的且正确的,肯定答案,不讨论。如果有不同意见的,让同学讨论。)
可能出现错误需讨论的有:
评:第4题
(1)坐标对吗?(估计问题不大)
(2)他路上经过的地方对吗?(估计问题不大)
(3)图形对吗?(估计问题不大)
第5题
(1)红色图形平移的对吗?为什么?
引导学生说出:可以有两种平移的方法:第一种方法:先向上平移6个单位,再向右平移3个单位;第二种方法:先向右平移3个单位,再向上平移6个单位。
(2)略
归纳总结:同学们,通过本节课的学习,你有哪些收获?引导学生说一说解类似题时该注意哪些问题?
六、课堂作业
必做题:P60 6、8
思考题:P61 10
七年级数学下册教案5
教学建议
1.知识结构
2.重点和难点分析
(1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念.两直线垂直的定义中虽然强调“有一个角是直角”,但实际上由对顶角和邻补角的性质,可以得到其他三个角也都是直角,因此不指定哪一个角是直角,实际上无论哪一个角是直角,都可以判定两直线垂直.反过来,已知两直线垂直,那么它们的四个交角中无论哪一个角都是直角.对于点到直线的距离,一定要给学生强调距离是垂线段的长度,是一个数量,而不能误认为是垂线段本身.
(2)本节的难点是空间直线与平面、平面与平面的垂直关系.因为初一学生的空间想象能力比较差,想象不出什么情况下直线与平面、平面与平面垂直.教科书是学生在对长方体已有认识的基础上,通过进一步的观察分析,得出结论,对于这些结论,只要求学生有感性认识,不要求学生掌握,所以老师不要深挖.
3.教法建议
(1)本节仍用上节用过的相交线模型作演示(也可用我们提供的课件),在让学生观察模型时,不要只让学生看热闹,而要让他们带着问题去看,可以提出如下两个问题:
(1)转动木条b时,它和不动木条a互相垂直的位置有几个?(认识垂线的唯一性);
(2)当a、b相交有一个角是直角时,其他三个角也都是直角吗?然后找学生回答,以此来增加学生对两直线垂直的感性认识.
(3)对于空间里直线与平面、平面与平面垂直的知识是要求学生了解的内容,不是重点但是难点,因为此时学生的空间想象力差,不容易想象它们垂直的情形,为了突破这个难点,
我们做了一个课件,这个课件把直线与平面、平面与平面垂直的情况,更直观的展现了学生,帮助学生对此知识的理解.
教学设计示例
一、素质教育目标
(一)知识教学点
1.使学生掌握垂线的概念。
2.会用三角尺或量角器过一点画一条直线的垂线。
3.使学生理解并掌握垂线的第一个性质。
(二)能力训练点
1.通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。
2.通过垂线的画法,进一步培养学生的实际动手操作能力。
(三)德育渗透点
使学生初步树立辩证唯物主义观点。
(四)通过垂线,使学生进一步体会到几何图形的对称美。
二、学法引导
1.教师教法:活动投影片演示直观教学法,引导发现法.
2.学生学法:在教师的指导下,自主式学习.
三、重点、疑点及解决办法
(一)重点
垂线概念和性质.
(二)难点
垂线的判断和性质的理解运用.
(三)疑点
垂线的性质.
(四)解决办法
通过创设情境,引导学生主动发现性质,并运用练习加以巩固.
四、课时安排
1课时
五、教具学具准备
投影仪、三角尺、量角器、自制胶片.
六、师生互动活动设计
1.通过创设情境,复习基础知识,引入课题.
2.通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课.
3.通过师生互答完成归纳小结.
七、教学步骤
(一)明明目标
通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力.
(二)整体感知
以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为巩固检查手段,强化教学内容.
(三)教学过程
创设情境,复习引入
提出问题:如右图,(1)∠AOC的对顶角是哪个角?这两个角的关系怎样?
(2)∠AOC的'邻补角有几个?是哪几个角?
教师演示:(活动投影片)转动直线CD的同时,用量角器量直线AB、CD相交所得的角,多变换几种位置一直转到使直线CD与AB所成的角有一个角∠AOC=90°(如右图).
学生活动:当∠AOC=90°,口答∠BOD、∠AOD、∠BOC等于多少度?为什么?这种位置关系有几种?直线AB、CD的位置关系怎样?学生回答完后,引入课题.
【板书】2.2垂线
【教法说明】因为对顶角、邻补角及对顶角的性质,是建立垂直概念的基础之上,所以在讲新课前要复习巩固这些内容.
探究新知,讲授新课
提出问题:什么样的两条直线互相垂直?
学生活动:学生思考上面的问题,同桌相互叙述,互相纠正补充,语句通顺后举手回答.
教师根据学生回答情况,适当加以引导点拨,然后板书:
【板书】 1.垂直定义
当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的里线,它们的支点叫做垂足.
提出以下问题帮助学生理解定义(投影显示,投影片1)
(1)“有一个角是直角”是指四个角中的哪一个角?
(2)“互相垂直”是什么意思?
(3)相交的两条直线都垂直吗?
【教法说明】用活动投影片演示“两条直线互相垂直”这个概念的产生过程,使学生形成对概念的感性认识再回过头来进行定义,并且从演示过程中看到垂直是两条直线相交的一种特殊情况,认识了事物间的发展变化的辩证关系,提出问题帮助学生理解概念,比教师单纯“强调”效果更好.
学生活动:让学生举出日常生活和生产中常见的垂直关系的实例.(十字路口的两条道路;方格本的横线和竖线;铅垂线和水平线.)
【教法说明】通过举例,启发学生广泛联想,一方面让学生知道两直线垂直的概念是从实物中抽象出来的;另一方面使理论与实际相联系.
2.垂直的记法、读法和判定
学生活动:让学生自己尝试学习,阅读课本第60页的内容,然后师生间相互交流.
归纳:①直线垂直的记法读法:直线AB、CD互相垂直,记作“AB⊥CD”域“CD⊥AB”,读作“AB垂直于CD”,如果垂足为O,记作“AB⊥CD,垂足为O”(如图右上).
②垂直判定:∵∠AOC=90°,
∴AB⊥CD(垂直的定义).
∵AB⊥CD(已知),
∴∠AOC=90°(垂直的定义).
学生活动:用∠AOD、∠BOD或∠BOC让学生重复练习正、反两步推理.
【教法说明】让学生自己尝试学习,可充分发挥学生的积极性、主动性,对垂直定义做正、反两方面的推理可加深学生对定义的理解,一方面为了渗透符号推理格式,熟悉符号的使用;另一方面可加深学生对定义的理解,定义既可以作判定用,又可以当性质用.
3.垂线的画法及性质
学生活动:让学生用三角板或量角器,过直线上一点或者直线外一点画直线的垂线,回答过直线上(直线外)一点能不能画这条直线的垂线?能画几条?(请一个学生到黑板上去画)
通过画图,得垂线的第一条性质:过一点有且只有一条直线与已知直线垂直.
提出问题:
(1)“过一点”包括几种情况?
(2)“有且只有”是什么意思?(“有”表示存在,“只有”表示惟一.)
【教法说明】垂线的性质放手让学生自己动手画图,自己总结,培养了学生动手,动脑,发现问题和解决问题的能力,达到能力培养的目标.
学生活动:让学生尝试画一条线段或射线的垂线(一个学生板演).
【教法说明】学生画图时,教师巡回指导,发现问题,及时纠正,使学生加深印象,进一步培养学生动手操作能力.
尝试反馈,巩固练习
投影显示(投影片2)
【教法说明】平面内两条直线互相垂直,是一种非常重要的位置关系,本组练习态在使学生会用定义判断两直线垂直,并且应从不同角度去掌握判断它的方法.
投影显示(投影片3)
【教法说明】本组填空题主要是通过变式图形,让学生判断两条直线垂直,防止思维定式.第1题区别垂直相交和外交。第2题通过计算判断两条直线垂直,第3题是巩固两条直线垂直的性质.
投影显示(投影片4)
【教法说明】在前边练习的基础上,学生自己解决并不难,教师要完全放手,开阔学生思路,学生可能出现多种解法,口算、算术解法、列方程等,找一个用方程解决的学生板演,因为这种方法更具有一般性,并通俗易懂,学生易于接受.解这类综合性的题,要求学生能结合图形,发现几何对象在数量上的明显关系及隐含关系并会用代数手段进行计算,另外对几何对象的位置关系要会紧扣定义判断.
投影显示(投影片5)
【教法说明】让学生在理解概念的基础上,多动手练习画垂线,进一步体会垂线的惟一性,同时培养学生的动手操作能力。
(四)总结、扩展
投影显示(投影片6)
【教法说明】通过小结,帮助学生全面地理解掌握所学知识,使知识成为“体系”从而形成新的认知结构。
八、布置作业
(一)必做题
课本第70页习题2.1A组第5题。
(二)选做题
课本第72页B组第5题。
【教法说明】让学有余力的学生进一步做B组练习,目的是调动学生的学习和积极性,提高学生思维广度,培养学生良好的学习习惯和思维方式。
作业答案
九、板书设计
数学教案-垂线
七年级数学下册教案6
教学目标:
1.借助自己熟悉的事物,感受较小数;
2.通过分析、交流、合作,加深对较小数的认知,发展数感;
3.能用科学技术法表示绝对值较小的数.
重点、难点:
对较小数字的信息作合理的`解释和推断,感受较小数,发展数感,用科学记数法表示绝对值较小的数.
教学过程:
一、复习提问
1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。
2.什么叫科学记数法?把下列各数用科学记数法来表示:
(1)2500000(2)753000(3)205000000
二、创设问题情境引入:
出示“议一议”前三幅图(让学生阅读,思考)
教师提出问题:一百万分之一有多少呢?提示本节内容,导入课题“认识百万分之一”.
三、通过师生共同参与教学活动,加深对绝对值较小数的认知.
1.出示投影:“议一议”
珠穆朗玛峰是世界第一高峰,它的海拔高度约为8844米;
(1)让学生计算珠穆朗玛峰高度的千分之一是多少?相当于几层楼的高度?
(2)让学生计算珠穆朗玛峰高度的百万分之一是多少?并直观地描述这个长度.
2.出示投影:“议一议”
(1)让学生计算出天安门面积的百分之一的面积,并用语言描述.
(2)让学生计算出天安门面积的万分之一及百万分之一的面积,并用语言描述.
教师综述:
在日常生活中除了会接触到较大的数,同时也会接触到较小的数;通过刚才大家的计算,交流体会,感受到一个物体的高度或面积的百万分之一的大小,使大家认识了百万分之一.
七年级数学下册教案7
教学目标:
1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。
2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。
教学重点:理解有序数对的概念,用有序数对来表示位置。
教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时
教学过程
一、创设问题情境,引入新课
展示书p105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?
原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。
二、师生共同参于教学活动
(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。
师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?
生:不能,要确定还必须知道“排数”。
(2)教师书写平面图通知,由学生分组讨论。
今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。
师:你们能明白它的意思吗?
学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。
师:请同学们思考以下问题:
①怎样确定你自己的座位的位置?
②排数和列数先后须序对位置有影响吗?
生:通过讨论,交流后得到以下共识:
①可用排数和列数两个不同的数来确定位置。
②排数和列数的先后须序对位置有影响。
(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
(4)在生活中还有用有序数对表示一个位置的例子吗?
学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。
例如:人们常用经纬度来表示,地球上的地点
三、巩固练习
让学生完成p46的练习。
四、布置作业
1、课本习题6,1,1。
2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
1 2 3 4 5 6 7 8
五、教后反思
师:谈谈本节课,你有哪些收获?
由同学交流解决问题,教师设疑为以后的学习奠定基础。
一、教学目标
知识与技能
了解数轴的概念,能用数轴上的点准确地表示有理数。
过程与方法
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
情感、态度与价值观
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
教学重点
数轴的三要素,用数轴上的点表示有理数。
教学难点
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的.“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
学习目标(学习重点):
1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;
2、运用菱形的识别方法进行有关推理。
补充例题:
例1.如图,在△abc中,ad是△abc的角平分线。de∥ac交ab于e,df∥ab交ac于f.四边形aedf是菱形吗?说明你的理由。
例2.如图,平行四边形abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.
四边形afce是菱形吗?说明理由。
例3.如图,abcd是矩形纸片,翻折b、d,使bc、ad恰好落在ac上,设f、h分别是b、d落在ac上的两点,e、g分别是折痕ce、ag与ab、cd的交点
(1)试说明四边形aecg是平行四边形;
(2)若ab=4cm,bc=3cm,求线段ef的长;
(3)当矩形两边ab、bc具备怎样的关系时,四边形aecg是菱形。
课后续助:
一、填空题
1、如果四边形abcd是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形
2、如图,d、e、f分别是△abc的边bc、ca、ab上的点,且de∥ba,df∥ ca
(1)要使四边形afde是菱形,则要增加条件______________________
(2)要使四边形afde是矩形,则要增加条件______________________
二、解答题
1、如图,在□abcd中,若2,判断□abcd是矩形还是菱形?并说明理由。
2、如图,平行四边形a bcd的两条对角线ac,bd相交于点o,oa=4,ob=3,ab=5.
(1)ac,bd互相垂直吗?为什么?
(2)四边形abcd是菱形吗?
3、如图,在□abcd中,已知adab,abc的平分线交ad于e,ef∥ab交bc于f,试问:四边形abfe是菱形吗?请说明理由。
4、如图,把一张矩形的纸abcd沿对角线bd折叠,使点c落在点e处,be与ad交于点f.
⑴求证:abf≌
⑵若将折叠的图形恢复原状,点f与bc边上的点m正好重合,连接dm,试判断四边形bmdf的形状,并说明理由。
七年级数学下册教案8
【知识与技能】
1、能用坐标表示地理位置。
2、要学会建立恰当的平面直角坐标系,要选择一个单位长度表示实际问题中一个恰当的长度。这样才能用较简洁的坐标系标出某个地理位置。
【过程与方法】
通过具体的实例体会用坐标表示地理位置的方法。
【情感态度】
体验学以致用,提高运用数学知识解决实际问题的能力,激发数学学习兴趣。
【教学重点】
用坐标表示地理位置。
【教学难点】
建立恰当的平面直角坐标系,并选择一个单位长度表示实际问题中一个恰当的长度是本节难点。
一、情境导入,初步认识
问题根据以下条件画一幅示意图,标出学校和小刚家、小强家、小敏家的位置。
小刚家:出校门向东走150m,再向北走200m。
小强家:出校门向西走200m,再向北走350m,最后向东走50m。
小敏家:出校门向南走100m,再向东走300m,最后向南走75m。
【教学说明】
全班同学分组讨论,再交流成果,最后在老师的指导下解决问题。
二、思考探究,获取新知
思考:
1建立怎样的平面直角坐标系?
2怎样用一个简洁的平面直角坐标系标出某个地理位置。
【归纳结论】
1取实际问题中的某一标志物作为原点,以东西方向为x轴,南北方向为y轴,则可用坐标清楚地表示地理位置。
2建立平面直角坐标系以后,要选择一个单位长度代表实际问题中一个恰当的长度,将地理位置当成一个点,这样就可简明地标出这个地理位置。需要注意的是,写该地理位置的坐标时要写实际问题的数值,这一点与前节所接触的坐标写法不相同,千万不要搞错了。三、运用新知,深化理解
如图所示,是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度)。请你以某个景点为原点,画出直角坐标系,并用坐标向游人介绍光岳楼、金凤广场、动物园的位置。
小明:以光岳楼为原点,金凤广场(-2,-1。5),动物园(7,3)。
小亮:以动物园为原点,金凤广场(-9,-4。5),光岳楼(-7,-3)。
你同意小明、小亮的介绍吗?你还有别的方法吗?
【教学说明】
可让学生自主完成,相互交流,最后师生共同评析,加深对坐标表示地理位置和建立恰当坐标系的理解。
【答案】
略。
四、师生互动,课堂小结
利用平面直角坐标系绘制区域一些地点分布情况平面图的过程如下:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定单位长度;
(3)在坐标系内画出这些点,写出各点的坐标系和各个地点的名称。
1布置作业:从教材“习题7.2”中选取。
2完成练习册中本课时的练习。
本节课的设计是从学生感兴趣的生活实例入手,遵循学生的认知规律,在学生自主探究,讨论交流的基础上进行归纳总结,使学生对知识的.认识从感性上升到理性。以实际问题为载体,在探究解决问题策略的过程中,让学生体会平面直角标系在生活中的作用,感悟到数形结合的方法,增强应用数学的意识,提高数学建模的能力;同时还丰富了学生数学活动的经验,让学生学会探索,学会学习。
【素材积累】
1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷叶上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢晶的。它们有时聚成一颗大水珠,骨碌一下滑水里,真像一个顽皮的孩子!
2、摘有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰凌,一根儿一根像水晶一样,真美啊!我们一个一个小脚印踩摘大地毯上,像画上了美丽的图画,踩一步,吱吱声旧出来了,原来是雪摘告我们:和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来。对了,还有树。树上挂满了树挂,有的树枝被压弯了腰,真是忽如一夜春风来,千树万树梨花开真好看呀!
七年级数学下册教案9
知识与技能:
掌握本章基本概念与运算,能用本章知识解决实际问题。
过程与方法:
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
情感态度:
领悟分类讨论思想,学会类比学习的方法。
教学重点:
本章知识梳理及掌握基本知识点。
教学难点:
应用本章知识解决实际与综合问题。
一、知识框图,整体把握
教学说明:
1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
二、释疑解惑,加深理解
1、利用平方根的概念解题
在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。
例1已知某数的平方根是a+3及2a—12,求这个数。
分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0
解得a=3
∴a+3=6,2a—12=—6
∴这个数是36
教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的.一个特例。
2、比较实数的大小
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
七年级数学下册教案10
七年级数学教案
1.2 一元一次不等式组的解法
2.2二元一次方程组的解法
2.3二元一次方程组的应用(1)
第10教案
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的`数学模型。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教学难点
找等量关系列二元一次方程组。
教学过程
一、情境引入。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、的方程,
是二元一次方程。求a、b的值。
2.P38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
P42。习题2.3A组第1题。
后记:
2.3二元一次方程组的应用(2)
第11教案
教学目标
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
教学重点
根据实际问题列二元一次方程组。
教学难点
1.找实际问题中的相等关系。
2.彻底理解题意。
教学过程
一、引入。
本节课我们继续学习用二元一次方程组解决简单实际问题。
二、新课。
例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?
探究: 1. 你能画线段表示本题的数量关系吗?
2.填空:(用含S、V的代数式表示)
设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1.建立方程模型。
(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。
(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?
2.P38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
五、作业。
七年级数学下册教案11
第一节 轴对称现象
一、教学目的
1、知识与技能目标
使学生感知现实世界中普遍存在的轴对称现象,通过观察、操作等活动,自主探求轴对称图形的特征,理解对称轴的含义,感受数学的美。
2、过程与方法
经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
3、情感态度与价值观
让学生在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发学生学习数学的兴趣。
4、教学重点、难点
重点:认识“轴对称图形”和“两个图形成轴对称”的概念,会找出简单轴对称图形的对称轴。难点:了解“轴对称图形”和“两个图形成轴对称”的区别和联系。
二、教学过程
(一)创设情景,引入新课
投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的'各类具有对称特点的图案)
同学们,在上课之前,我们先来欣赏一组图片:风景秀丽的漓江山水,美轮美奂的建筑艺术,生动形象的京剧脸谱,惟妙惟肖的民间剪纸,方便快捷的交通工具。这些图片美吗?那么老师告诉你们一个秘密,这些图片之所以这么美,是因为他们具有一个共同特征-轴对称现象。
分析各类图案的特点,让学生经历观察和分析,感受到轴对称的美和特征,初步认识轴对称图形。PPT出示学习目标(全班齐读),让学生明确学习目标。
(二)自学检测
1.(1)如果把 个平面图形沿着 对折后,直线两旁的部分能够互相 ,那么这个图形叫做轴对称图形,这条直线叫做 。
(2)老师这里有一些图片,哪位同学能够结合这些图形再加深一下我们对概念的理解呢?
2.(1)如果 个平面图形沿 折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的 。
(2)同样,哪位同学能够结合这些图形再加深一下我们对两个图形成轴对称的理解呢?
3.试举例说明现实生活中也具有轴对称特征的物体,并找出它的对称轴。发展学生想象能力,让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。
(三)互动释疑
1.请大家仔细观察!说说两组图片的不同之处和相同之处。
第一组 第二组
请探究 “轴对称图形”和“两个图形成轴对称”的区别和联系。
轴对称图形 两个图形成轴对称
区别 个图形 个图形
联系 1.沿一条直线折叠,直线两旁的部分能够 。2.都有 。3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线 ;如果把两个成轴对称的图形看成一个图形,那么这个图形就是 。
弄清楚轴对称图形与两个图形成轴对称的区别,两个图形成轴对称是指两个图形之间的形状和位置关系,而轴对称图形是对一个图形而言,轴对称图形是一个具有特殊形状的图形。它们都有沿某条直线对折使直线两旁的图形完全重合的特征。
2、请找出下面轴对称图形的对称轴。
等腰三角形 长方形 等边三角形 正方形 五角星 圆
归纳:①轴对称图形的对称轴可能不止一条。
②一个图形有多条对称轴时,它们相交于一点。
3.如图有四个大小相等的正方形组成“L”型图案.
(1)请你再添加一个正方形,使它变成轴对称图形,并画出对称轴;
(2)请你改变一个正方形的位置,使它变成轴对称图形,并画出对称轴。
实际教学效果:通过与其他小组同学进行讨论学习,各小组都对轴对称图形有深刻认识和理解。
(四)巩固提升
活动内容:进行适当的由浅入深,由感性到理性的一些练习,老师进行了一些必要的讲解,打好学生的知识技能的基础。
1、下列哪些是属于轴对称图形?并画出轴对称图形的对称轴。
2、下列四组图片中有哪几组图形成轴对称?
3、0-9十个数字中,哪些是轴对称图形?
4、下面的字母中,哪些是轴对称图形?
5、中国的汉字也十分注重对称美。猜一猜,这是什么字的一半?
6、如图:在3×3的正方形网格中,已有两个小正方形被涂上颜色.若再将图中其余小正方形任意涂一个,使整个图案构成一个轴对称图形的方法共有( )种,请在下图中画出来。比一比,谁的速度快!
7、下图是由一张纸对折后(两部分完全重合)得到的,展开折纸,你能得到什么样的图形?先想一想,再拼一拼。
(五)课堂小结
今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。
(六)布置作业
(1)必做题:习题5.1第1、3题
(2)选做题:动脑筋想一想,再亲手做一做,一张正方形纸片,如何只剪一刀,就得到一个十字形?
三、教学反思
1.以教材为本,但又不拘泥于教材,把握教材但又不被教材所束缚。
2.给学生充分的展示自己才华的机会。
3.注意改进方面:如给学生分组,把握教材的难度和重点,加强对学生的调控,备课要细致等,以利于后面的教学。
板书设计
5.1 轴对称现象
一、轴对称图形
二、两个图形成轴对称
三、轴对称图形和两个图形成轴对称的区别与联系
七年级数学下册教案12
一、教学目标
1、知识与技能
(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法目标:
(1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的
(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;
(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)
2、在组长的组织下进行讨论、交流。(约5分钟)
3、小组分任务展示。(约25分钟)
4、达标检测。(约5分钟)
5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴数轴的三要素什么
(二)小组合作交流,探究新知
1、观察下图,回答问题:(五组完成)
大象距原点多远两只小狗分别距原点多远
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作,4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)求下列各数的绝对值:(四组完成)-1.5,0,-7,2
(2)求下列各组数的绝对值:(一组完成)
(1)4,-4;
(2)0.8,-0.8;
从上面的结果你发现了什么
3、议一议:(八组完成)
(1)|+2|=,1=,|+8.2|=;5
(2)|-3|=,|-0.2|=,|-8|=.
(3)|0|=;
你能从中发现什么规律
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的'绝对值等于什么吗
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、(1)在数轴上表示下列各数,并比较它们的大小:-3,-1
(2)求出(1)中各数的绝对值,并比较它们的大小
(3)你发现了什么
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)(2)
(3)-8和-3(七组完成)
5和-2.7(六组完成)6五、达标检测:
1:填空:
绝对值是10的数有()
|+15|=()|–4|=()
|0|=()|4|=()
2:判断
(1)、绝对值最小的数是0。()
(2)、一个数的绝对值一定是正数。()
(3)、一个数的绝对值不可能是负数。()
(4)、互为相反数的两个数,它们的绝对值一定相等。()
(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()
六、总结:
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;
负数的绝对值是它的相反数;0的绝对值是0.
因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
七、布置作业
P50页,知识技能第1,2题.
七年级数学下册教案13
情景设置:
同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成“电视墙” ,计算图中这些电视墙的面积。
(每一个小长方形的长为a,宽为b)
我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。
从整体上看,“电视墙”的面积为长方形的长与宽的积:3a·3b;
从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。
于是,我们有:3a·3b = 9ab.
新课讲解:
1.探索研究
一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?
请学生回答,教师加以总结归纳:
两个单项式3a与3b相乘,只要把两个单项式的`系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.
4ab·5b这两个单项式的积是20ab。
同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。
2.例题
计算:(1)a·(6ab);
(2)(2x)·(-3xy).
解: (1)a·(6ab)
= (×6)·(a·a)·b
= 2ab;(教师规范格式)
(2)(2x)·(-3xy).
= 8x·(-3xy)
= 【8×(-3)】(x·x)y
= -24xy.
七年级数学下册教案14
教学目标
1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点
深化对正负数概念的理解
知识重点
正确理解和表示向指定方向变化的量
教学过程(师生活动)
设计理念
知识回顾与深化
回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的'例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.
问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题
3,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指
定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
七年级数学下册教案15
一、教学目标
1、知识目标:掌握数轴三要素,会画数轴。
2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;
3、情感目标:向学生渗透数形结合的思想。
二、教学重难点
教学重点:数轴的三要素和用数轴上的点表示有理数。
教学难点:有理数与数轴上点的对应关系。
三、教法
主要采用启发式教学,引导学生自主探索去观察、比较、交流。
四、教学过程
(一)创设情境激活思维
1.学生观看钟祥二中相关背景视频
意图:吸引学生注意力,激发学生自豪感。
2.联系实际,提出问题。
问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
师生活动:学生思考解决问题的方法,学生代表画图演示。
学生画图后提问:
1.马路用什么几何图形代表?(直线)
2.文中相关地点用什么代表?(直线上的点)
3.学校大门起什么作用?(基准点、参照物)
4.你是如何确定问题中各地点的位置的?(方向和距离)
设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。
问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?
师生活动:
学生思考后回答解决方法,学生代表画图。
学生画图后提问:
1.0代表什么?
2.数的符号的实际意义是什么?
3.-75表示什么?100表示什么?
设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。
问题3:生活中常见的温度计,你能描述一下它的结构吗?
设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。
问题4:你能说说上述2个实例的共同点吗?
设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。
(二)自主探究新知
学生活动:带着以下问题自学课本第8页:
1.什么样的直线叫数轴?它具备什么条件。
2.如何画数轴?
3.根据上述实例的经验,“原点”起什么作用?
4.你是怎么理解“选取适当的长度为单位长度”的'?
师生活动:
学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。
设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。
至此,学生已会画数轴,师生共同归纳总结(板书)
①数轴的定义。
②数轴三要素。
题目:(媒体展示)
1.判断下列图形是否是数轴。
2.口答:数轴上各点表示的数。
3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小组合作交流展示
问题:观察数轴上的点,你有什么发现?
数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的。点进行同样的讨论。
设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。
(四)归纳总结反思提高
师生共同回顾本节课所学主要内容,回答以下问题:
1.什么是数轴?
2.数轴的“三要素”各指什么?
3.数轴的画法。
设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。
(五)目标检测设计
1.下列命题正确的是( )
A.数轴上的点都表示整数。
B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C.数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零。
2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。
3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有xxxxxxx个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是xxxxxxxx。
五、板书
1.数轴的定义。
2.数轴的三要素(图)。
3.数轴的画法。
4.性质。
【七年级数学下册教案】相关文章:
七年级下册教案数学教案06-29
七年级数学下册教案04-23
七年级数学下册教案01-01
数学下册教案03-16
七年级数学下册教案【热门】02-04
人教版七年级数学下册教案01-29
七年级下册数学教案12-05
【推荐】七年级数学下册教案02-15
七年级数学下册教案【推荐】02-15
七年级数学下册优秀教案02-15