人教版初中数学教案
作为一名无私奉献的老师,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。那么问题来了,教案应该怎么写?下面是小编为大家整理的人教版初中数学教案,希望能够帮助到大家。

人教版初中数学教案1
教学目标:
1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.
2.理解对顶角相等,并能运用它解决一些问题.
重点:
邻补角、对顶角的概念,对顶角的性质与应用.
难点:
理解对顶角相等的性质的探索.
教学过程:
一、创设情境,引入新课
引导语:
我们生活的世界中,蕴涵着大量的相交线和平行线.
本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.
二、尝试活动,探索新知
教师出示一块布片和一把剪刀,表演剪刀剪布的过程.
教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?
学生观察、思考、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.
教师提问:我们可以把剪刀抽象成什么简单的图形?
学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.
教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)
学生根据观察和度量完成下表:
两条直线相交、所形成的角、分类、位置关系、数量关系
教师提问:
如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?
学生思考回答:
只会改变数量关系而不会改变位置关系.
师生共同定义邻补角、对顶角:
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.
教师提问:
你同意下列说法吗?如果错误,如何订正?
1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.
2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.
3.邻补角是互补的两个角,互补的两个角也是邻补角.
学生思考回答:1、2是对的`,3是错的.
第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.
教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.
教师把说理过程规范地板书:
在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角的性质:
对顶角相等.
强调对顶角的概念与对顶角的性质不能混淆:
对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
三、例题讲解
【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、巩固练习
1.判断下列图中是否存在对顶角.
2.按要求完成下列各题.
(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.
eq o(sup7(,图(1)) ,图(2))
(2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?
【答案】
1.都不存在对顶角.
2.(1)对顶角,邻补角.
对顶角:∠AOC和∠BOD,∠AOD和∠BOC.
邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、课堂小结
教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
教学反思
通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。
人教版初中数学教案2
按照学校的统一安排,教务处于20xx年3月26日对全校数学学科所有教师教案进行了一次检查,现将本次检查情况小结如下:
一、可取之处
1、90%的教师教师们能在二次备课中体现自己独到的见解,及时进行二次批注。
2、100%教师能够按照学校要求超周备课;
3、学习目标的设定总体上明确、具体,具有可操作性、可评价性;
4、教学流程都能够做到比较详实、具体,符合学情;
5、大多数教师能够及时就教学实际进行比较有针对性的反思;如:褚洪卓、陈梅、许晓梅、韩晓春等;
二、不足之处
1、极个别教师的'二次批注略显简单,极个别教师没有及时进行反思;还有授课教师、授课时间未及时填写,教案未教师签约等问题。
2、个别教师培优补差措施不够具体,还有待完善。
三、整改措施
1、学习目标的叙写要明确、具体、可操作、可评价,指向性强;
2、二次批注不少于三次。
3、电子教案教学流程要完整,各个环节必须完善;
4、教学反思内容要具体,措施要得力,要有得有失,有“生成”的思考,建议用红笔书写或者用红色字体标注。
通过本次教案的检查,一方面找出了我们的不足,另一方面也是我们互相学习和交流的机会,这样更能促进我们教学常规工作的进一步落实,改进我们的教学工作,使我们的教学工作再上一个新台阶!
人教版初中数学教案3
作为一位杰出的老师,时常需要编写教案,借助教案可以更好地组织教学活动。写教案需要注意哪些格式呢?以下是小编帮大家整理的《组合图形的面积》数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
一、教材分析:
《组合图形的面积》是人教版五年级上册第五单元的内容。在三年级时,学生已经学习了长方形与正方形的面积计算,在本册又学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。发展学生的空间观念,为下面立体图形的学习做好铺垫。
二、学生分析
本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决基本图形问题的方法。根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。尤其是对转化思想的渗透,学生在探索组合图形面积的计算方法时,应该能通过自主探索、合作交流,达到方法的多样化。但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
三、教学目标
根据新课标的要求及教材的特点,充分考虑到五年级学生的心智水平,并在对教学效果进行全面预测的基础上,确立如下教学目标
1、知识与技能
(1)在自主探索的活动中,理解计算组合图形的多种方法。
(2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。
2、过程与方法
让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
3、情感态度与价值观
结合装修房子的情境,让学生感受学习组合图形面积的必要性,再学生探索、解决的过程中激活学生思维,通过师生互动、生生互动,学生动手操作、合作交流,让学生在活动中得到积极体验数学在生活中的必要性,从而产生积极的数学学习情感。
四、教学重、难点:
为了更好的达到目标,考虑到学生掌握新知的能力,从而确定本节课的教学重难点。
1、教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算
2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。
五、教学理念:
新课标指出:“数学教学应联系现实生活,获得积极情感的体验。培养学生的创新精神和应用意识。”本节课,首先采用情境导入法,创情境导思维使学生乐学。\"拼图游戏\",通过\"拼一拼\"、\"画一画\"、\"猜一猜\"、\"说一说\"导出组合图形的意义。“装修房子”激发学生的学习兴趣,提高学习效果。
在教学中时刻运用引导式教学,在教学中教师要激发学生的学习动机,使之对学习产生浓厚的兴趣,师精导、生巧学,以学论教,扶放结合。由学生小组合作共同探索问题的解决方法时,当学生想出各种不同的方法时,引导学生自己比较方法的异同点,并进行归纳,同时在此基础上懂得根据条件选择合适的方法来解决问题。
六、教学设计:
为了能更好的凸显“有效教学”的教学理念,高效的完成教学目标,特结合普遍学习特点,设计如下环节:
(一)复习旧知,引出概念
为了更好的认识组合图形的概念,注重新旧知识的迁移,先复习学生熟悉的`几种平面几何图形,进而介绍组合图形的概念。
(二)组织动手实践多维尝试探究
创设老师家装修遇到困难请同学帮忙的情境,出示计算老师家客厅面积的问题,先让有方法的同学们说说自己的计算方法,在学生们都明白之后,随后就可以组织小组探索“有没有其他方法”,然后在全班将多种方法进行展示。
在全班交流时引导学生比较方法,让学生观察哪些方法有相同之处。,引导学生分析、比较各种方法的区别与联系。近而让学生对“分割法”和“添补法”进行讨论,让学生明确“分割法”就是将分割的基本图形进行相加,而“添补法”就是从大图形中减去添上来的小图形。最后让学生知道计算组合图形的面积有多种方法,只要同学们认真观察,多动脑筋,选择自己喜欢而又简单的方法进行计算就可以了。
(三)抓住重点环节,理解内容
学生认知是由浅入深的,通过动手实践,他们已经知道:组合图形的面积可以通过分割、添补成我们所学过的平面图形的方法得到,抓住这个重点,组织学生理解,突破教学重难点,完成了本节课的教学目标,真正做到了有效教学。到此,教学中仍然借助装修房子的情境,给出凉台的平面图,让学生根据已知数据计算面积,这样通过自主探究的学习方式充分调动了学生学习的积极性,让学生真正成为学习的主人。
(四)分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。本着“重基础、验能力、拓思维”的原则,延续着本节课的“装修房子”情境设计层次练习。教师出示天花板的平面图,让通过学生小组合作共同探索总结出多种方法解决问题,在巩固组合图形面积计算方法的同时,学生也获得了成功的喜悦。
最后,开放练习,把时间留给学生,让他们通过本节课学习的计算组合图形面积的方法来计算出“拼图游戏”时自己所拼的组合图形的面积!让学生真正做到“学以致用”!
设计以上练习可以让学生更深入理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。真正做到有效练习!
人教版初中数学教案4
教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
2.x的值是否可以任意取?有限定范围吗?
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的.售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销
售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
【初中数学教案】相关文章:
初中数学教案11-15
初中数学教案【推荐】01-12
【荐】初中数学教案01-12
初中数学教案【荐】01-12
【热】初中数学教案01-12
初中数学教案:公式12-29
【推荐】初中数学教案01-26
初中数学教案精品01-13
(热)初中数学教案07-01
[优选]初中数学教案07-04