初一数学教案

时间:2024-12-31 07:25:15 七年级数学教案 我要投稿

【精】初一数学教案4篇

  作为一名教学工作者,就不得不需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。来参考自己需要的教案吧!以下是小编精心整理的初一数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

【精】初一数学教案4篇

初一数学教案1

  一、学习与导学目标:

  知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;

  过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;

  情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

  二、学程与导程活动:

  A、准备活动:

  1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的`正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

  2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

  提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

  归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

  B、学习概念:

  1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

  一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

  2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

  3、从上述意义上看,你看如何规定0的相反数更为合理?

  商讨得:0的相反数仍是0,即0的相反数等于它本身。

  C、应用举例:

  1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

  2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

  3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

  结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗?

  4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?

  +(-2/3),-(-2/3),-(+2/3),+(+2/3)

  你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

  5、若a=-5,则-a=;若-x=7,则x=。

  三、笔记与板书提纲:

  课题应用举例中的2

  活动引例应用举例中的4(学生练习),5、概念

  四、练习与拓展选题:

  1、教科书P18/3;

  2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

初一数学教案2

  【教学内容】

  第二章 2.1 正数与负数 2.2 数轴

  【教学目标】

  1、会判断一个数是正数还是负数,理解负数的意义。

  2、会把已知数在数轴上表示,能说出已知点所表示的数。

  3、了解数轴的原点、正方向、单位长度,能画出数轴。

  4、会比较数轴上数的大小。

  【知识讲解】

  一、本讲主要学习内容

  1、负数的'意义及表示 2、零的位置和地位

  3、有理数的分类 4、数轴概念及三要素

  5、数轴上数与点的对应关系 6、数轴上数的比较大小

  其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。

  下面概述一下这六点的主要内容

  1、负数的意义及表示

  把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,- 等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

  2、零的位置和地位

  零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

  3、有理数的分类

  正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。

  正整数

  整数 零 正有理数

  有理数 负整数 或 有理数 零

  分数 正分数 负有理数

  负分数

初一数学教案3

  7.3.1多边形

  [教学目标]

  1.了解多边形及有关概念,理解正多边形及其有关概念.

  2.区别凸多边形与凹多边形.

  [教学重点、难点]

  1.重点:

  (1)了解多边形及其有关概念,理解正多边形及其有关概念.

  (2)区别凸多边形和凹多边形.

  2.难点:

  多边形定义的准确理解.

  [教学过程]

  一、新课讲授

  投影:图形见课本P84图7.3一l.

  你能从投影里找出几个由一些线段围成的图形吗?

  上面三图中让同学边看、边议.

  在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

  (1)它们在同一平面内.

  (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

  这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

  提问:三角形的定义.

  你能仿照三角形的定义给多边形定义吗?

  1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

  如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

  2.多边形的边、顶点、内角和外角.

  多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

  3.多边形的对角线

  连接多边形的'不相邻的两个顶点的线段,叫做多边形的对角线.

  让学生画出五边形的所有对角线.

  4.凸多边形与凹多边形

  看投影:图形见课本P85.7.3—6.

  在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

  5.正多边形

  由正方形的特征出发,得出正多边形的概念.

  各个角都相等,各条边都相等的多边形叫做正多边形.

  二、课堂练习

  课本P86练习1.2.

  三、课堂小结

  引导学生总结本节课的相关概念.

  四、课后作业

  课本P90第1题.

  备用题:

  一、判断题.

  1.由四条线段首尾顺次相接组成的图形叫四边形.()

  2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

  3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

  4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

  二、填空题.

  1.连接多边形的线段,叫做多边形的对角线.

  2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

  3.各个角,各条边的多边形,叫正多边形.

  三、解答题.

  1.画出图(1)中的六边形ABCDEF的所有对角线.

  2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?

  3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?

  4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?

初一数学教案4

  教学目标:

  (1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

  (2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

  教学重点:一元二次不等式的解法(图象法)

  教学难点:

  (1)一元二次方程、一元二次不等式与二次函数的关系;

  (2)数形结合思想的渗透

  教学方法与教学手段:

  尝试探索教学法、归纳概括。

  教学过程:

  一、复习引入

  1.复习一元一次方程、一元一次不等式与一次函数的关系

  [师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

  学生可能回答是代数方法,也可能说是利用直线图象。

  [师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

  [师]请同学们画出图象,并回答问题。

  一次函数y=2x-7的图象如下:

  填表:

  当x 时,y = 0,即 2x-7 0;

  当x 时,y < 0,即 2x-7 0;

  当x 时,y > 0,即 2x-7 0;

  注:(1)引导学生由图象得出结论(数形结合)

  (2)由学生填空(一边演示y<0,y>0部分图象)

  从上例的特殊情形,你能得出什么结论?

  注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

  2.新课导入

  [师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

  二、讲解新课

  1、一元二次不等式解法的探索

  [师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

  填表:方程x2-4x+3=0(即y=0)的解是

  不等式x2-4x+3>0(即y>0)的解集是

  不等式x2-4x+3<0(即y<0)的解集是

  注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的.解集。(边说边画y>0,y<0部分图象)

  [师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

  注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,<0来确定的。

  2、讲解例题

  [师]接下来请同学们再来分析几个具体例子

  (板书)例:解下列各不等式

  (1)2x2-3x-2>0;

  (2) -3x2+6x>2;

  (3)4x2-4x+1>0;

  (4)-x2+2x-3>0.

  注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

  解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

  所以原不等式的解集是{x| x<- x="">2 }

  四、课后作业:书P21/习题1.5/1.3.5.6

  五、教学设计说明:

  1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

  2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

  3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

  4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

【初一数学教案】相关文章:

初一数学教案11-14

初一数学教案12-22

初一数学教案[实用]01-22

初一数学教案上册11-19

初一数学教案(精选6篇)02-26

初一数学教案精选【15篇】11-23

初一上册数学教案01-17

初一数学教案设计01-17

青岛初一数学教案模板10-28

初一数学教案设计06-20