现在位置:范文先生网>教案大全>数学教案>六年级数学教案>六年级下册数学教案

六年级下册数学教案

时间:2025-06-09 11:21:06 银凤 六年级数学教案 我要投稿

人教版六年级下册数学教案(精选9篇)

  在教学工作者实际的教学活动中,通常需要准备好一份教案,借助教案可以更好地组织教学活动。我们应该怎么写教案呢?以下是小编为大家整理的人教版六年级下册数学教案,仅供参考,欢迎大家阅读。

人教版六年级下册数学教案(精选9篇)

  六年级下册数学教案 1

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

  (二)核心能力

  经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (三)学习目标

  1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (四)学习重点

  了解简单的鸽巢问题,理解“总有”和“至少”的含义。

  (五)学习难点

  运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.谈话导入

  师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

  师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

  2.问题探究

  (1)呈现问题,引出探究

  出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

  师:“总有”是什么意思?“至少”有2支是什么意思?

  学生自由发言。

  预设:一定有

  不少于两只,可能是2支,也可能是多于2支。

  就是不能少于2支。

  (2)体验探究,建立模型

  师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

  小组活动:学生思考,摆放。

  ①枚举法

  师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

  预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

  师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

  (不一定,也可能放在其它笔筒里。)

  师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

  预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

  师:这种放法可以记作(3,1,0)

  师:这3支铅笔一定要放在第一个笔筒里吗?

  (不一定)

  师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

  预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

  师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

  预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

  预设4:还可以(2,1,1)

  或者(1,1,2)、(1,2,1)

  师:还有其它的放法吗?

  (没有了)

  师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

  师:这几种放法如果用一句话概括可以怎样说?

  (装得最多的笔筒里至少装2支。)

  师:装得最多的那个笔筒一定是第一个笔筒吗?

  (不一定,哪个笔筒都有可能。)

  【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

  ②假设法

  师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

  预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

  师:“平均放”是什么意思?

  预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

  师:为什么要先平均分?

  学生自由发言。

  引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

  师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

  师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

  【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

  (3)提升思维,建立模型

  ①加深感悟

  师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

  预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:把7支笔放进6个笔筒里呢?还用摆吗?

  学生自由发言。

  师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

  师:你发现了什么?

  预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:你的发现和他一样吗?

  学生自由发言。

  师:你们太了不起了!

  师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

  练一练:

  师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

  师:说说你的想法。

  师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

  介绍狄利克雷:

  师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

  ②建立模型

  出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

  学生独立思考、讨论后汇报:

  师:怎样用算式表示我们的想法呢?生答,板书如下。

  7÷3=2本……1本(2+1=3)

  师:如果有10本书会怎么样能?会用算式表示吗?写下来。

  出示:

  把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  10÷3=3本……1本(3+1=4)

  师:观察板书你有什么发现?

  预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

  师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

  学生讨论,汇报:

  8÷3=2……22+1=3

  8÷3=2……22+2=4

  师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

  师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

  预设:我认为根“商”有关,只要用“商+1”就可以得到。

  师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

  引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

  鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

  【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

  3.巩固练习

  (1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

  (2)第69页的做一做第1、2题。

  4.全课总结

  师:通过这节的学习,你有什么收获?

  小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

  (三)课时作业

  1.一个小组共有13名同学,其中至少有几名同学同一个月出生?

  答案:2名。

  解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

  2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

  答案:8名。

  解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

  第二课时鸽巢原理

  中原区汝河新区小学师芳

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

  (二)核心能力

  在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

  (三)学习目标

  1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

  2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

  (四)学习重点

  引导学生把具体问题转化为“抽屉原理”。

  (五)学习难点

  找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.情境导入

  师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

  师:神奇吧!你们想不想表演一个呢?

  师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

  在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

  2.探究新知

  (1)学习例3

  ①猜想

  出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

  预设:2个、3个、5个…

  ②验证

  师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

  可以用表格进行整理,课件出示空白表格:

  学生独立思考填表,小组交流。

  全班汇报。

  汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

  课件汇总,思考:从这里你能发现什么?

  教师:通过验证,说说你们得出什么结论。

  小结:盒子里有同样大小的'红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

  ③小结

  师:为什么球的个数一定要比抽屉数多?而且是多1呢?

  预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

  师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

  板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

  (2)引导学生把具体问题转化成“抽屉原理”。

  师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

  思考:①摸球问题与“抽屉原理”有怎样的联系?

  ②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

  学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

  从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

  结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

  3.巩固练习

  (1)完成教材第70页“做一做”第1题。

  (2)完成教材第70页“做一做”第2题。

  4.课堂总结

  师:这节课你学到了什么知识?谈谈你的收获和体验。

  (三)课时作业

  1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

  答案:5只。

  解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

  2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

  答案:16条。

  解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

  六年级下册数学教案 2

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙提问导入

  1.提问激趣。

  根据“甲是乙的”,你能想到什么?

  预设

  生1:乙是甲的。

  生2:甲比乙少,乙比甲多。

  生3:甲是甲、乙之差的5倍。

  生4:甲是甲、乙之和的。

  生5:乙比甲多20%。

  ……

  2.导入新课。

  这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

  ⊙回顾与整理

  1.分数(百分数)的'一般应用题。

  (1)分数(百分数)乘法应用题的特征及解题关键各是什么?

  ①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

  ②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

  (2)分数(百分数)除法应用题的特征及解题关键各是什么?

  ①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

  ②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

  (3)分数(百分数)应用题的常见题型有哪些?如何解答?

  ①求甲是乙的几分之几(百分之几):甲÷乙。

  ②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

  ③已知甲比乙多(少)几分之几,求甲:乙×。

  ④已知甲比乙多(少)几分之几,求乙:甲÷。

  ⑤求百分率。

  发芽率=×100%

  小麦的出粉率=×100%

  产品的合格率=×100%

  出勤率=×100%

  ⑥求利息:利息=本金×利率×时间

  2.分数应用题的特例——工程问题。

  (1)什么是工程问题?

  明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

  (2)解决工程问题的关键是什么?

  明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

  (3)工程问题的数量关系式有哪些?

  预设

  生1:工作总量=工作效率×工作时间

  生2:工作效率=工作总量÷工作时间

  生3:工作时间=工作总量÷工作效率

  生4:合作时间=工作总量÷工作效率和

  六年级下册数学教案 3

  教学内容:

  人教版小学数学教材六年级上册第96~97页例1及相关练习。

  教学目标:

  1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。

  2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。

  教学重点:

  看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。

  教学难点:

  根据统计图进行简单的数据分析。

  教学准备:

  课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。

  教学过程:

  一、创设情境,谈话激趣

  1.出示教材第96页情境图,说说同学们正在干什么?

  2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)

  喜欢的项目

  乒乓球足球跳绳踢毽其他人数

  【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

  二、整理数据,引入新课

  1.通过这张统计表,我们可以得到什么信息?

  预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

  2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

  3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

  4.学生进行口算或笔算,完成统计表,并进行校对。

  喜欢的项目

  乒乓、球足球、跳绳、踢毽、其他

  人数

  12 8 5 6 9

  百分比

  30% 20% 12.5% 15% 22.5%

  【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。

  三、合作交流,探究新知

  1.认识扇形统计图

  (1)如果我用这样一张图来统计我们最喜欢的运动项目,用这个扇形表示乒乓球的30%,你觉得这整个圆表示的是什么?

  (2)乒乓球的30%又表示什么?

  预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。

  (3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)

  (4)根据学生回答完成扇形统计图。

  (5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)

  (6)想想各个扇形的大小与什么有关系?

  (7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。

  2.理解扇形统计图的特征

  (1)看图说说,在这幅统计图中你还可以知道哪些信息?

  预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的'一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。

  (2)说说这样的统计图有什么优势?

  预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。

  (3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。

  【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。

  3.尝试练习

  出示教材第97页“做一做”的内容。

  (1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)

  (2)说说从图上你得到了哪些信息?

  (3)如果每天喝一袋250 g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250 g的关系,进而算出各种营养成分多少克。

  六年级下册数学教案 4

  教学内容:

  人教版小学数学教材六年级下册第107~108页例2及相关练习。

  教学目标:

  1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

  2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

  重点难点:

  探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

  教学准备:

  教学课件。

  教学过程:

  一、直接导入,揭示课题

  同学们,上节课我们探究了图形中隐藏的.数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

  【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

  二、探索发现,学习新知

  (一)教师与学生比赛算题

  1.教师:你知道等于多少吗?(学生:)

  教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

  2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

  在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

  3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

  【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

  (二)借助正方形探究计算方法

  1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

  2.进行演示讲解。

  (1)演示:用一个正方形表示1,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

  六年级下册数学教案 5

  教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

  情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、 自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),

  侧面积=长方形的'面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积 = 圆柱的侧面积+底面积×2

  =Ch+2π r2

  =πdh+2π r2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3.巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

  六年级下册数学教案 6

  教学目标

  (一)准确地理解和掌握质数和合数的意义。

  (二)会判断一个数是质数还是合数,会把自然数按约数个数进行分类。(三)培养学生观察比较、抽象概括和判断推理的能力。

  教学重点和难点

  (一)质数、合数的意义。

  (二)质数、合数与奇数、偶数的区别。

  教学用具

  投影片,2~50的自然数表。

  教学过程设计

  (一)复习准备

  1.判断下面各数,哪些是偶数?哪些是奇数?奇数和偶数是根据什么来分的?(投影片)2,3,4,9,14,15,101,187,235,561,740,927,839,456。

  2.按照能否被2整除对自然数进行分类:(投影片)

  3.请说出下面各数的所有约数:(投影片出题,学生口答老师板书。)

  1的约数有________;2的约数有________;

  3的约数有________;4的约数有________;

  5的约数有________;6的约数有________;

  7的约数有________;8的约数有________;

  9的约数有________;10的约数有________;

  11的约数有________;12的约数有________。

  教师:请观察板书,左边和右边的数各有什么特点?(左边是奇数,右边是偶数。)教师:我们已经学过按照能否被2整除对自然数进行分类。除了这种分法还有没有别的分法呢?这节课就研究这个问题。

  (二)学习新课

  1.质数、合数的意义。

  (1)教师:(指板书)请把1至12各数的约数的个数就出来(学生口答,老师在每列数的后面补出括号,填上数)?

  教师:请观察这些数和它们的约数个数,看一看约数的个数有几种情况?

  学生口答后老师板书:有三种情况,约数个数是一个,两个,两个以上。

  教师:请再举几个数,看一看它们的约数的情况是不是与这几种情况相符合?

  学生举例并分析出所举出的数的约数是2个或者两个以上。(小组活动)

  (2)教师:请观察只有两个约数的这些数和它们的约数,看看这些约数有什么共同的特点?

  学生口答后教师板书出:1和它本身。

  教师:如上面这些数,都具有这个特点,我们把它们叫做质数(也叫做素数)。板书:质数。

  教师:谁能说一说什么叫质数?

  学生口答后老师再把板书补充完整:

  一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

  教师:请观察有两个以上约数的这些数和它们的约数,有什么特点?

  在学生口答后,老师逐次板书出:除了1和它本身还有别的约数;合数。

  在学生完整地概括什么是合数后板书:

  一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

  教师:的区别是什么?(约数只有两个还是两个以上。)

  2.判断一个数是质数还是合数。

  (1)(板书)例2,判断下面各数,哪些是质数、哪些是合数(数竖排写)。

  17(的约数):1,17(两个)

  22(的约数):1,2,11,22(两个以上)

  29(的约数):1,29(两个)

  35(的约数):1,5,7,35(两个以上)

  37(的约数):1,37(两个)

  87(的约数):1,3,29,87(两个以上)

  教师:根据什么来判断?(检查每个数的约数的个数。)

  学生口答,老师在上面各数后面板书出判断过程。

  板书:17,29,37是质数

  22,35,87是合数。

  再请学生说一说怎样判断一个数是否是质数?

  教师:一个数有两个以上的约数,判断它是不是质数时,需不需要把它的所有的约数都找出来?(不需要,只要找出第三个约数,就能证明它除了1和本身外还有别的约数。)

  口答练习:下面哪些数是质数?哪些数是合数?19,21,43,67。

  (2)教师:判断一个数是不是质数,除了检查它的约数外,还可以用查质数表的方法来判断。

  请学生取出2~50的自然数表。按如下要求去做:先划掉2的倍数,再依次划掉3,5,7的倍数(不包括2,3,5,7本身)看剩下的是什么数?能说明理由吗?

  学生书写和讨论,老师巡视。最后说明这就是50以内的质数表。请看课本59页质数表。

  练习:请判断下面各数是质数还是合数?并说出自己是如何判断的?(查表或是看约数)

  31,57,87,4325,632080。

  (3)教师:我们已经认识了质数、合数的区别是它们约数的个数,那么我们能不能按约数的个数这个特点对自然数进行分类呢?分几类呢?

  学生讨论中有分两类,三类之争,老师引导从约数个数去看。最后在学生讨论基础上画出集合图:

  教师:为什么1要单列一类?

  口答后板书:1既不是质数又不是合数。

  教师:到此,这节课要研究的自然数的一种新的分类问题已解决了,还认识了质数、合数两个概念。板书引出课题:质数和合数。

  3.质数,合数与奇数,偶数的区别。

  口答填空:(投影片)在1~20的自然数中,奇数是();偶数是();质数是();合数是()。

  下面几种说法对不对?说明理由。

  ①质数都是奇数;

  ②合数都是奇数;

  ③除2以外的偶数都是合数;

  ④自然数除了质数就是合数;

  ⑤自然数除了奇数就是偶数。

  请再说一说奇数、偶数与质数,合数的.区别。

  (三)巩固反馈

  1.口答:(投影片)

  ①在19,29,39,77,84,91中( )是质数;

  ②合数最少有()个约数,最小的质数是(),最小的合数是(),最小的奇数是()。

  2.“一个数有1和它本身两个约数,这样的数叫做质数。”这句话对不对?为什么?

  (四)课堂总结和课后作业

  什么是质数?什么是合数?

  按约数个数对自然数进行分类。

  质数、合数与奇数,偶数的区别。

  作业:课本P62练习十三,1,2,3,4。

  课堂教学设计说明

  本节内容是在学生已掌握了约数、倍数、奇数、偶数的基础上,新引进质数、合数两个新概念。教学从研究根据约数个数对自然数进行分类入手,这个分类与已学过的奇数、偶数分类容易混淆,所以设计复习提问和新课教学共用一组板书,这样给学生创造了一个便于比较的视觉效果,(奇数、偶数可以混合排列,也可以左右排列,前者观察与比较难度比后者大,这可以根据班级情况自行选定)。通过比较,学生清楚地认识到质数,合数以及1的区别在于约数个数的多少,同时使学生分清了质数、合数与奇数、偶数的本质区别是对自然数采用了不同标准的分类,这样在学生头脑中建立了清晰的概念,在应用中既不会分类时把1划错范围或遗忘,也不会把质数、合数与奇数,偶数混为一体。

  质数、合数概念的归纳,设计中是引导学生从观察入手,抓住关键词,逐层进行的,这样有利于学生概括,归纳能力的培养。

  新课教学分三部分。

  第一部分教学质数,合数的意义。

  第二部分学习判断一个数是不是质数的方法。

  第三部分是区别质数、合数与奇数,偶数。

  六年级下册数学教案 7

  教学内容:

  北师大版小学数学教材六年级下册第8—10页。

  教学目标:

  1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,能够运用公式正确的计算圆柱的体积和容积。

  2、初步学会用转化的思想和方法,提高解决实际问题的能力。

  教学重点、难点:

  重点:掌握圆柱体积的计算公式。

  难点:圆柱体积计算公式的推导。

  教学过程:

  一、情境导入

  1、出示教学情境:怎样用学过的知识测量出老师的水杯里装了多少毫升的水?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出长方体的长、宽和水的高,就能求出水的体积。

  2、出示第二情境:圆柱形的木柱子、压路机的车轮这样的圆柱用这种方法还行吗?怎么办?

  怎样计算圆柱的体积?这就是我们本节课要研究的问题。(板书课题:计算圆柱的体积)

  二、探究新知:

  1、大胆猜想:你觉得圆柱体积的大小和什么有关?

  学生猜想,教师出示相应的课件演示,让学生观察,体会圆柱的体积和它的底面积和高,有关系,有怎样的关系。

  2、圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。)

  学生讨论交流:

  (1)把圆柱拼成长方体后,什么变了,什么没变?

  (2)拼成的长方体与圆柱之间有什么联系?

  (3)通过观察得到什么结论?

  得到:圆柱的体积=底面积×高 V=Sh

  三、拓展交流

  要求圆柱的体积只要找到它的底面积和高就可以,分别讨论知道半径、直径、地面周长,该怎么求出圆柱的体积,总结出公式。

  四、练习设计:

  1、想一想,填一填:

  把圆柱体切割拼成近似(),它们的()相等。长方体的高就是圆柱体的( ),长方体的底面积就是圆柱体的( ),因为长方体的体积=(),所以圆柱体的体积=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圆柱体体积用字母表示为( )

  2、判断正误,对的.画“√”,错误的画“×”。

  (1)圆柱体的底面积越大,它的体积越大。×

  (2)圆柱体的高越长,它的体积越大。×

  (3)圆柱体的体积与长方体的体积相等。×

  (4)圆柱体的底面直径和高可以相等。√

  3、分别计算下列各图形的体积,再说说这几个图形体积计算方法之间的联系。

  4×3×8

  6×6×6

  3.14×(5÷2)2×8

  =96(cm3)

  =216(cm3)

  =157(cm3)

  4、计算下面各圆柱的体积。

  60×4

  3.14×12×5

  3.14×(6÷2)2×10

  =240(cm3)

  =15.7(cm3)

  =282.6(dm3)

  5、这个杯子能否装下3000mL的牛奶?

  3.14×(14÷2)2×20

  =3077.2(cm3)

  =3077.2(mL)

  3077.2mL>3000mL

  答:这个杯子能装下3000mL的牛奶。

  五、课堂小结:谈谈这节课你有哪些收获?

  六年级下册数学教案 8

  学材分析

  教学重难点:从不同面,观察两个简单的物体,能辨认相应的视图,教学难点:体会物体的相对关系。

  学情分析

  学生已有一定的基础。

  学习目标

  1、观察两个简单的物体,能辨认相应的视图,体会物体的相对关系。

  2、通过分组合作,观察,操作,交流等活动,使学生体验数学与日常生活的关系。

  3、激活学生已有的观察物体的经验,提高在物体及视图之间转换的能力。

  4、培养学生的空间观念,发展形象思维和推理能力

  导学策略

  导练法、迁移法、例证法

  教学准备

  学具盒、课件

  导学流程设计:导入--探究新知--巩固练习--总结

  教师预设

  学生活动

  一、探究新知:

  二、出示课件:书P77图让学生照图摆一摆。找一找他的左侧面和右侧面看到的形状相同吗?指名说一说,你看到的形状。(如果学生没有发现从物体的右侧面和左侧面看到的形状并一样,引导学生重新进行观察。重点交流右侧面和左侧面看到的形状有什么不同,并且联系观察的位置说说原因。)

  三、教学试一试:出示课件:P77试一试图一学生观察后,按照要求摆一摆。引导学生观察从左侧面和右侧面看到的各是什么形状?

  出示课件:P77试一试图二先摆一摆再从右侧面和左侧面来观察,各是什么形状?

  提问:通过观察你有什么发现?集体交流:引导学生感受到:有的物体从左右侧面看到的.形状不同,也有的物体从左右侧面看到的形状是相同的。

  学生练习

  校对

  六年级

  强化练习

  讨论

  教学反思

  在教学中要让学生动手操作,这样学生的空间想象能力会提高的快一些。

  六年级下册数学教案 9

  教学内容:

  教材第72页、第73页的例1、2、3题,练习十四第1--3题。

  教学目标:

  1.比较系统地掌握有关整数、分数、小数、百分数和负数的基础知识,进一步弄清概念间的联系与区别。

  2.使学生熟练地掌握十进制计数法和整数、小数数位顺序表,并能正确地熟练地读、写整数与小数,会比较熟的大小。

  3.通过整理和复习,感悟数学知识之间的内在联系和区别,初步学会知识的整理。

  教学重点:

  使学生比较系统地掌握整数、小数、分数、百分数和负数的基础知识。

  教学难点:

  弄清概念间的联系和区别。

  教具准备:

  多媒体课件

  教学过程:

  一、提问引入

  (一)回顾知识

  1.课件出示P72情境图

  学生提取信息

  总计人数10500名运动员

  花费4.96亿英镑

  约占总人数的3.77%

  金牌数约占总数302枚的八分之一

  第29届奥运会出现了25.5%的负增长

  提问:这些都是什么数?每个数有什么含义?完成73页做一做

  2.同学们课下都收集了一些数据,请你汇报生活中用这些数的例子,并说说每个数的具体含义。(学生边说,教师边板书)

  提问:有什么感受?

  3.请你给这些数进行分类。

  好,我们来看这些数,如果把这些数分类,可以怎样分?

  教师监控1

  ①学生按照整、小、分、百、分类。

  ②这些数叫整数还可以叫什么?(自然数)

  ③什么叫自然数?

  ④自然数和整数有什么关系?

  ⑤小学阶段我们研究的自然数就是整数,但以我们现在学习的知识来看整数还不只这些,我们还研究了负整数。

  ⑥想一想,整数和自然数的范围哪个更大?

  过渡:这节课我们就对这些数的知识进行复习,整理。

  二、小组合作,整理概念

  (一)小组合作,进行数的整理

  出示整理提示

  1.根据数的.特点找到数之间的联系,并用树形图的形式进行整理。

  2.先小组讨论它们之间的联系,然后分工合作,汇报时要说清整理的理由。

  3.如果不能够面面俱到,可以选取一部分数进行整理。

  (二)汇报整理

  1.汇报,说说自己的理由。

  2.边回顾整理过程,边完善知识整理的步骤。

  (1)回忆知识点

  (2)熟悉这些知识的概念

  (3)抓住知识点间的关系。(将黑板上的知识进行分类)

  (4)整理知识(将每一大类进行整理,梳理成知识网络图)(板书)

  (三)分块复习基本概念,并进行简单应用

  刚才同学们通过找到知识间的包含关系,将知识整理成网络图,其实,这些知识之间还存在着共同之处。

  1.正数、0、负数、小数、分数都可以用数轴清楚地表示出来,出示例题

  (1)请在数轴上把蓝点的位置表示的数写出来

  (2)你在数轴上表示出、2.5、-、-2.5

  (3)观察数轴你发现了什么?

  数轴上的点都以0为对称点是相互对应的

  没有最大的整数也没有最小的整数,也就是说整数个数是无限的

  正数和负数中都存在着整数、分数、小数

  2.小数和整数是十进制计数。而分数是计数单位。

  (1)数位顺序表

  从数为顺序表中你知道了什么?

  能将小数与整数联系在一起的是数位顺序表。请你在表中写出30、3和3.3这两个数,根据数位顺序表说出3的不同含义。

  同样是3,为什么含义不同?整数与小数有哪些联系与区别?

  教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百以及十分之一、百分之一都是计数单位。各个计数单位所占的位置,叫做数位。数位是按一定顺序排列的。

  口答:27038=2()+7()+0()+3()+8()

  (2)提问:分数单位指的是什么?和计数单位有什么不同?

  3.根据ab=c(a、b、c均为整数,且b0)说明因数与倍数的含义?

  4.分数和百分数

  百分数是分数中的一种特殊形式。二者的联系与区别是什么?

  (1)联系:都能表示率,百分数所表示的含义是百分之几,是分数的一种表示形式。分数和百分数可以互相转化!

  (2)区别:①百分数和分数的写法不同;②分数既可以表示率,也可以表示量,但百分数只可以表示率;③分数可以约成最简分数,可是百分数不能进行约分。④分数的分子只能是整数,而百分数的分子既可以是整数,也可以是小数。

  三、巩固练习

  P74-75练习十四2题、3题、4题

  四、课堂小结

  本节课中你有什么收获?还有什么疑问,请和同学交流。

  板书设计:

  1.数的意义

  2.数的读、写。数的认识

  3.数的大小

  4.分数、小数、百分数的互化

  教学反思:

  本节课的教学内容是让学生重温小学阶段有关数的意义进行系统整理。在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆数的意义,配合相关的练习题,让学生进行训练,加深学生的理解

【六年级下册数学教案】相关文章:

六年级下册的数学教案07-16

【精选】六年级下册数学教案06-15

六年级下册数学教案(精选)08-27

六年级下册数学教案05-06

六年级下册人教版数学教案11-08

人教版六年级下册数学教案06-30

六年级下册的数学教案精选[15篇]07-17

人教版六年级下册数学教案10-12

[合集]六年级下册数学教案06-14

六年级下册数学教案(精华)10-29