现在位置:范文先生网>教案大全>数学教案>高一数学教案>高一数学函数的教案

高一数学函数的教案

时间:2023-01-14 15:27:33 高一数学教案 我要投稿

高一数学函数的教案通用15篇

  作为一名为他人授业解惑的教育工作者,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的高一数学函数的教案,仅供参考,欢迎大家阅读。

高一数学函数的教案通用15篇

高一数学函数的教案1

  学习目标

  1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;

  2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;

  3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.

  旧知提示

  复习:若 ,则 ,其中 称为 ,其范围为 , 称为 .

  合作探究(预习教材P70- P72,找出疑惑之处)

  探究1:元旦晚会前,同学们剪彩带备用。现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。设所得的彩带的根数为 ,剪的次数为 ,试用 表示 .

  新知:对数函数的概念

  试一试:以下函数是对数函数的是( )

  A. B. C. D. E.

  反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如: , 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 ,且 .

  探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?

  研究方法:画出函数图象,结合图象研究函数性质.

  研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.

  作图:在同一坐标系中画出下列对数函数的图象.

  新知:对数函数的图象和性质:

  象

  定义域

  值域

  过定点

  单调性

  思考:当 时, 时, ; 时, ;

  当 时, 时, ; 时, .

  典型例题

  例1求下列函数的定义域:(1) ; (2) .

  例2比较大小:

  (1) ; (2) ; (3) ;(4) 与 .

  课堂小结

  1. 对数函数的概念、图象和性质;

  2. 求定义域;

  3. 利用单调性比大小.

  知识拓展

  对数函数凹凸性:函数 , 是任意两个正实数.

  当 时, ;当 时, .

  学习评价

  1. 函数 的定义域为( )

  A. B. C. D.

  2. 函数 的定义域为( )

  A. B. C. D.

  3. 函数 的定义域是 .

  4. 比较大小:

  (1)log 67 log 7 6 ; (2) ; (3) .

  课后作业

  1. 不等式的 解集是( ).

  A. B. C. D.

  2. 若 ,则( )

  A. B. C. D.

  3. 当a1时,在同一坐标系中,函数 与 的图象是( ).

  4. 已知函数 的定义域为 ,函数 的'定义域为 ,则有( )

  A. B. C. D.

  5. 函数 的定义域为 .

  6. 若 且 ,函数 的图象恒过定点 ,则 的坐标是 .

  7.已知 ,则 = .

  8. 求下列函数的定义域:

  2.2.2 对数函数及其性质(2)

  学习目标

  1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;

  3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.

  旧知提示

  复习1:对数函数 图象和性质.

  a1 0

  图性质

  (1)定义域:

  (2)值域:

  (3)过定点:

  (4)单调性:

  复习2:比较两个对数的大小:(1) ; (2) .

  复习3:(1) 的定义域为 ;

  (2) 的定义域为 .

  复习4:右图是函数 , , , 的图象,则底数之间的关系为 .

  合作探究 (预习教材P72- P73,找出疑惑之处)

  探究:如何由 求出x?

  新知:反函数

  试一试:在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质?

  反思:

  (1)如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗?为什么?

  (2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.

  典型例题

  例1求下列函数的反函数:

  (1) ; (2) .

  提高:①设函数 过定点 ,则 过定点 .

  ②函数 的反函数过定点 .

  ③己知函数 的图象过点(1,3)其反函数的图象过点(2,0),则 的表达式为 .

  小结:求反函数的步骤(解x 习惯表示定义域)

  例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升.

  (1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?

  (2)纯净水 摩尔/升,计算其酸碱度.

  例3 求下列函数的值域:(1) ;(2) .

  课堂小结

  ① 函数模型应用思想;② 反函数概念.

  知识拓展

  函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等.

  学习评价

  1. 函数 的反函数是( ).

  A. B. C. D.

  2. 函数 的反函数的单调性是( ).

  A. 在R上单调递增 B. 在R上单调递减

  C. 在 上单调递增 D. 在 上单调递减

  3. 函数 的反函数是( ).

  A. B. C. D.

  4. 函数 的值域为( ).

  A. B. C. D.

  5. 指数函数 的反函数的图象过点 ,则a的值为 .

  6. 点 在函数 的反函数图象上,则实数a的值为 .

  课后作业

  1. 函数 的反函数为( )

  A. B. C. D.

  2. 设 , , , ,则 的大小关系是( )

  A. B. C. D.

  3. 的反函数为 .

  4. 函数 的值域为 .

  5. 已知函数 的反函数图象经过点 ,则 .

  6. 设 ,则满足 的 值为 .

  7. 求下列函数的反函数.

  (1) y= ; (2)y= (a1,x (3) .

高一数学函数的教案2

  第二十四教时

  教材:倍角公式,推导和差化积及积化和差公式

  目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

  过程:

  一、 复习倍角公式、半角公式和万能公式的推导过程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教学与测试》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化简得:

  ∵ 即

  二、 积化和差公式的推导

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

  例三、 求证:sin3sin3 + cos3cos3 = cos32

  证:左边 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右边

  原式得证

  三、 和差化积公式的推导

  若令 + = , = ,则 , 代入得:

  这套公式称为和差化积公式,其特点是同名的'正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小结:和差化积,积化和差

  五、 作业:《课课练》P3637 例题推荐 13

  P3839 例题推荐 13

  P40 例题推荐 13

高一数学函数的教案3

  重点难点教学:

  1。正确理解映射 概念;

  2。函数相等 两个条件;

  3。求函数 定义域和值域。

  一。教学过程:

  1。 使学生熟练掌握函数 概念和映射 定义;

  2。 使学生能够根据已知条件求出函数 定义域和值域; 3。 使学生掌握函数 三种表示方法。

  二。教学内容:

  1。函数 定义

  设A、B是两个非空 数集,如果按照某种确定 对应关系f,使对于集合A中 任意一个数x,在集合B中都有唯一确定 数()fx和它对应,那么称:fAB为从集合A到集合B 一个函数(function),记作:(),yfxxA

  其中,x叫自变量,x 取值范围A叫作定义域(domain),与x 值对应 y值叫函数值,函数值 集合{()|}fxxA叫值域(range)。显然,值域是集合B 子集。

  注意:

  ① “y=f(x)”是函数符号,可以用任意 字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中 f(x)表示与x对应 函数值,一个数,而不是f乘x。

  2。构成函数 三要素 定义域、对应关系和值域。

  3、映射 定义

  设A、B是两个非空 集合,如果按某一个确定 对应关系f,使对于集合A中 任意

  一个元素x,在集合B中都有唯一确定 元素y与之对应,那么就称对应f:A→B为从 集合A到集合B 一个映射。

  4。 区间及写法:

  设a、b是两个实数,且a

  (1) 满足不等式axb 实数x 集合叫做闭区间,表示为[a,b];

  (2) 满足不等式axb 实数x 集合叫做开区间,表示为(a,b);

  5。函数 三种表示方法 ①解析法 ②列表法 ③图像法

高一数学函数的教案4

  一、内容及其解析

  (一)内容:指数函数的性质的应用。

  (二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。

  二、目标及其解析

  (一)教学目标

  指数函数的图象及其性质的应用;

  (二)解析

  通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的能力。

  三、问题诊断分析

  解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。

  四、教学过程设计

  探究点一:平移指数函数的图像

  例1:画出函数 的图像,并根据图像指出它的单调区间.

  解析:由函数的解析式可得:

  其图像分成两部分,一部分是将 (x-1)的图像作出,而它的图像可以看作 的图像沿x轴的负方向平移一个单位而得到的,另一部分是将 的图像作出,而它的图像可以看作将 的图像沿x轴的负方向平移一个单位而得到的.

  解:图像由老师们自己画出

  变式训练一:已知函数

  (1)作出其图像;

  (2)由图像指出其单调区间;

  解:(1) 的图像如下图:

  (2)函数的增区间是(-,-2],减区间是[-2,+).

  探究点二:复合函数的性质

  例2:已知函数

  (1)求f(x)的.定义域;

  (2)讨论f(x)的奇偶性;

  解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。

  解:(1)要使函数有意义,须 -1 ,即x 1,所以,定义域为(- ,0) (0,+ ).

  (2)变式训练二:已知函数 ,试判断函数的奇偶性;

  简析:∵定义域为 ,且 是奇函数;

  探究点三 应用问题

  例3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的

  84%.写出这种物质的剩留量关于时间的函数关系式.

  【解】

  设该物质的质量是1,经过 年后剩留量是 .

  经过1年,剩留量

  变式:储蓄按复利计算利息,若本金为 元,每期利率为 ,设存期是 ,本利和(本金加上利息)为 元.

  (1)写出本利和 随存期 变化的函数关系式;

  (2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.

  分析:复利要把本利和作为本金来计算下一年的利息.

  【解】

  (1)已知本金为 元,利率为 则:

  1期后的本利和为

  2期后的本利和为

  期后的本利和为

  (2)将 代入上式得

  六.小结

  通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?

高一数学函数的教案5

  教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

  教学目的:

  (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示某些函数的定义域;

  教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

  教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学过程:

  一、引入课题

  1.复习初中所学函数的概念,强调函数的模型化思想;

  2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

  备用实例:

  我国xxxx年4月份非典疫情统计:

  日期222324252627282930

  新增确诊病例数1061058910311312698152101

  3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  二、新课教学

  (一)函数的有关概念

  1.函数的`概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素:

  定义域、对应关系和值域

  3.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间;

  (2)无穷区间;

  (3)区间的数轴表示.

  4.一次函数、二次函数、反比例函数的定义域和值域讨论

  (由学生完成,师生共同分析讲评)

  (二)典型例题

  1.求函数定义域

  课本P20例1

  解:(略)

  说明:

  ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

  ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

  ○3函数的定义域、值域要写成集合或区间的形式.

  巩固练习:课本P22第1题

  2.判断两个函数是否为同一函数

  课本P21例2

  解:(略)

  说明:

  ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  巩固练习:

  ○1课本P22第2题

  ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

  (1)f(x)=(x-1)0;g(x)=1

  (2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

  (三)课堂练习

  求下列函数的定义域

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  三、归纳小结,强化思想

  从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

  四、作业布置

  课本P28习题1.2(A组)第1—7题(B组)第1题

高一数学函数的教案6

  学习目标 1.函数奇偶性的概念

  2.由函数图象研究函数的奇偶性

  3.函数奇偶性的判断

  重点:能运用函数奇偶性的定义判断函数的奇偶性

  难点:理解函数的奇偶性

  知识梳理:

  1.轴对称图形:

  2中心对称图形:

  【概念探究】

  1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。

  2、 求出 , 时的函数值,写出 , 。

  结论: 。

  3、 奇函数:___________________________________________________

  4、 偶函数:______________________________________________________

  【概念深化】

  (1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。

  (2)、奇函数偶函数的定义域关于原点对称。

  5、奇函数与偶函数图像的对称性:

  如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。

  如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。

  6. 根据函数的奇偶性,函数可以分为____________________________________.

  题型一:判定函数的奇偶性。

  例1、判断下列函数的奇偶性:

  (1) (2) (3)

  (4) (5)

  练习:教材第49页,练习A第1题

  总结:根据例题,你能给出用定义判断函数奇偶性的步骤?

  题型二:利用奇偶性求函数解析式

  例2:若f(x)是定义在R上的'奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。

  练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。

  已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式

  题型三:利用奇偶性作函数图像

  例3 研究函数 的性质并作出它的图像

  练习:教材第49练习A第3,4,5题,练习B第1,2题

  当堂检测

  1 已知 是定义在R上的奇函数,则( D )

  A. B. C. D.

  2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )

  A. 增函数且最小值为-7 B. 增函数且最大值为7

  C. 减函数且最小值为-7 D. 减函数且最大值为7

  3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )

  A. B. C. D.

  4 已知函数 为奇函数,若 ,则 -1

  5 若 是偶函数,则 的单调增区间是

  6 下列函数中不是偶函数的是(D )

  A B C D

  7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )

  A B f(- )f(-2) f(3) C f(- )

  8 奇函数 的图像必经过点( C )

  A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))

  9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )

  A 0 B 1 C 2 D 4

  10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__

  11若f(x)在 上是奇函数,且f(3)_f(-1)

  12.解答题

  用定义判断函数 的奇偶性。

  13定义证明函数的奇偶性

  已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数

  14利用函数的奇偶性求函数的解析式:

  已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。

高一数学函数的教案7

  教学目标:

  1.进一步理解用集合与对应的语言来刻画的函数的概念,进一步理解函数的本质是数集之间的对应;

  2.进一步熟悉与理解函数的定义域、值域的定义,会利用函数的定义域与对应法则判定有关函数是否为同一函数;

  3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.

  教学重点:

  用对应来进一步刻画函数;求基本函数的定义域和值域.

  教学过程:

  一、问题情境

  1.情境.

  复述函数及函数的定义域的概念.

  2.问题.

  概念中集合A为函数的定义域,集合B的作用是什么呢?

  二、学生活动

  1.理解函数的值域的概念;

  2.能利用观察法求简单函数的值域;

  3.探求简单的复合函数f(f(x))的定义域与值域.

  三、数学建构

  1.函数的值域:

  (1)按照对应法则f,对于A中所有x的值的对应输出值组成的集合称之

  为函数的值域;

  (2)值域是集合B的子集.

  2.x g(x) f(x) f(g(x)),其中g(x)的值域即为f(g(x))的定义域;

  四、数学运用

  (一)例题.

  例1 已知函数f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).

  例2 根据不同条件,分别求函数f(x)=(x-1)2+1的'值域.

  (1)x∈{-1,0,1,2,3};

  (2)x∈R;

  (3)x∈[-1,3];

  (4)x∈(-1,2];

  (5)x∈(-1,1).

  例3 求下列函数的值域:

  ①= ;②= .

  例4 已知函数f(x)与g(x)分别由下表给出:

  x1234x1234

  f(x)2341g(x)2143

  分别求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.

  (二)练习.

  (1)求下列函数的值域:

  ①=2-x2;②=3-|x|.

  (2)已知函数f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).

  (3)已知函数f(x)=2x+1,g(x)=x2-2x+2,试分别求出g(f(x))和f(g(x))的值域,比较一下,看有什么发现.

  (4)已知函数=f(x)的定义域为[-1,2],求f(x)+f(-x)的定义域.

  (5)已知f(x)的定义域为[-2,2],求f(2x),f(x2+1)的定义域.

  五、回顾小结

  函数的对应本质,函数的定义域与值域;

  利用分解的思想研究复合函数.

  六、作业

  课本P31-5,8,9.

高一数学函数的教案8

  目标:

  1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

  2.让学生了解函数的零点与方程根的联系 ;

  3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

  4。培养学生动手操作的能力 。

  二、教学重点、难点

  重点:零点的概念及存在性的判定;

  难点:零点的确定。

  三、复习引入

  例1:判断方程 x2-x-6=0 解的存在。

  分析:考察函数f(x)= x2-x-6, 其

  图像为抛物线容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函数f(x)的图像是连续曲线,因此,

  点B (0,-6)与点C(4,6)之间的那部分曲线

  必然穿过x轴,即在区间(0,4)内至少有点

  X1 使f(X1)=0;同样,在区间(-4,0) 内也至

  少有点X2,使得f( X2)=0,而方程至多有两

  个解,所以在(-4,0),(0,4)内各有一解

  定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

  抽象概括

  y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

  若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

  f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

  所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

  注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

  3、我们所研究的大部分函数,其图像都是连续的'曲线;

  4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

  四、知识应用

  例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

  解:f(x)=3x-x2的图像是连续曲线, 因为

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

  练习:求函数f(x)=lnx+2x-6 有没有零点?

  例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

  解:考虑函数f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

  练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

  五、课后作业

  p133第2,3题

高一数学函数的教案9

  1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

  (1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

  (2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

  2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的`观察,分析,归纳等逻辑思维能力。

  3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

  高一数学对数函数教案:教材分析

  (1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

  (2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

  (3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

  高一数学对数函数教案:教法建议

  (1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

  (2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

高一数学函数的教案10

  教学目标

  会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

  重 点

  函数单调性的证明及判断。

  难 点

  函数单调性证明及其应用。

  一、复习引入

  1、函数的定义域、值域、图象、表示方法

  2、函数单调性

  (1)单调增函数

  (2)单调减函数

  (3)单调区间

  二、例题分析

  例1、画出下列函数图象,并写出单调区间:

  (1) (2) (2)

  例2、求证:函数 在区间 上是单调增函数。

  例3、讨论函数 的单调性,并证明你的结论。

  变(1)讨论函数 的单调性,并证明你的结论

  变(2)讨论函数 的`单调性,并证明你的结论。

  例4、试判断函数 在 上的单调性。

  三、随堂练习

  1、判断下列说法正确的是 。

  (1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;

  (2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;

  (3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;

  (4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。

  2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函数 在 上是___ ___;函数 在 上是__ _____。

  3.下图分别为函数 和 的图象,求函数 和 的单调增区间。

  4、求证:函数 是定义域上的单调减函数。

  四、回顾小结

  1、函数单调性的判断及证明。

  课后作业

  一、基础题

  1、求下列函数的单调区间

  (1) (2)

  2、画函数 的图象,并写出单调区间。

  二、提高题

  3、求证:函数 在 上是单调增函数。

  4、若函数 ,求函数 的单调区间。

  5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。

  三、能力题

  6、已知函数 ,试讨论函数f(x)在区间 上的单调性。

  变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。

高一数学函数的教案11

  一. 教学内容:平面向量与解析几何的综合

  二. 教学重、难点:

  1. 重点:

  平面向量的基本,圆锥曲线的基本。

  2. 难点:

  平面向量与解析几何的内在联系和知识综合,向量作为解决问题的一种工具的应用意识。

  【典型例题

  [例1] 如图,已知梯形ABCD中, ,点E分有向线段 所成的比为< > ,双曲线过C、D、E三点,且以A、B为焦点,求双曲线的离心率.

  解:如图,以AB的垂直平分线为 轴,直线AB为 轴,建立直角坐标系 轴,因为双曲线经过点C、D且以AB为焦点,由对称性知C、D关于 轴对称

  设A( )B( 为梯形的高

  ∴

  设双曲线为 则

  由(1): (3)

  将(3)代入(2):∴ ∴

  [例2] 如图,已知梯形ABCD中, ,点E满足 时,求离心率 的取值范围。

  解:以AB的垂直平分线为 轴,直线AB为 轴,建立直角坐标系 轴。

  因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性,知C、D关于 轴对称 高中生物。

  依题意,记A( )、E( 是梯形的高。

  由

  得

  设双曲线的方程为 ,则离心率由点C、E在双曲线上,将点C、E的坐标和由(1)式,得 (3)

  将(3)式代入(2)式,整理,得故 ,得解得所以,双曲线的离心率的取值范围为

  [例3] 在以O为原点的直角坐标系中,点A( )为 的直角顶点,已知 ,且点B的纵坐标大于零,(1)求 关于直线OB对称的圆的方程。(3)是否存在实数 ,使抛物线 的取值范围。

  解:

  (1)设 ,则由 ,即 ,得 或

  因为

  所以 ,故

  (2)由 ,得B(10,5),于是直线OB方程:由条件可知圆的标准方程为:得圆心(

  设圆心( )则 得 ,

  故所求圆的方程为(3)设P( )为抛物线上关于直线OB对称的两点,则

  得

  即 、于是由故当 时,抛物线(3)二:设P( ),PQ的中点M(∴ (1)-(2): 代入∴ 直线PQ的`方程为

  ∴ ∴

  [例4] 已知常数 , 经过原点O以 为方向向量的直线与经过定点A( 方向向量的直线相交于点P,其中 ,试问:是否存在两个定点E、F使 为定值,若存在,求出E、F的坐标,不存在,说明理由。(20xx天津)

  解:根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在两定点,使得点P到两定点距离的和为定值。

  ∵ ∴

  因此,直线OP和AB的方程分别为 和消去参数 ,得点P( ,整理,得

  ① 因为(1)当(2)当 时,方程①表示椭圆,焦点E 和F 为合乎题意的两个定点;

  (3)当 时,方程①也表示椭圆,焦点E 和F( )为合乎题意的两个定点。

  [例5] 给定抛物线C: 夹角的大小,(2)设 求 在 轴上截距的变化范围

  解:

  (1)C的焦点F(1,0),直线 的斜率为1,所以 的方程为 代入方程 )、B(则有

  所以 与

  (2)设A( )由题设

  即 ,由(2)得 ,

  ∴

  依题意有 )或B(又F(1,0),得直线 方程为

  当 或由 ,可知∴

  直线 在 轴上截距的变化范围为

  [例6] 抛物线C的方程为 )( 的两条直线分别交抛物线C于A( )两点(P、A、B三点互不相同)且满足 ((1)求抛物线C的焦点坐标和准线方程

  (2)设直线AB上一点M,满足 ,证明线段PM的中点在 轴上

  (3)当 ),求解:(1)由抛物线C的方程 ),准线方程为

  (2)证明:设直线PA的方程为

  点P( )的坐标是方程组 的解

  将(2)式代入(1)式得

  于是 ,故 (3)

  又点P( )的坐标是方程组 的解

  将(5)式代入(4)式得 ,故

  由已知得, ,则设点M的坐标为( ),由 。则

  将(3)式和(6)式代入上式得

  即(3)解:因为点P( ,抛物线方程为由(3)式知 ,代入

  将 得因此,直线PA、PB分别与抛物线C的交点A、B的坐标为

  于是, ,

  因即 或

  又点A的纵坐标 满足当 ;当 时,所以,

  [例7] 已知椭圆 和点M( 的取值范围;如要你认为不能,请加以证明。

  解: 不可能为钝角,证明如下:如图所示,设A( ),直线 的方程为

  由 得 ,又 , ,若 为钝角,则

  即 ,即

  即

  即∴

  ∴

  【模拟】(答题时间:60分钟)

  1. 已知椭圆 ,定点A(0,3),过点A的直线自上而下依次交椭圆于M、N两个不同点,且 ,求实数 的取值范围。

  2. 设抛物线 轴,证明:直线AC经过原点。

  3. 如图,设点A、B为抛物线 ,求点M的轨迹方程,并说明它表示什么曲线。

  4. 平面直角坐标系中,O为坐标原点,已知两点A(3,1),B( )若C满足 ,其中 ,求点C的轨迹方程。

  5. 椭圆的中心是原点O,它的短轴长为 ,相应于焦点F( )的准线 与 轴相交于点A, ,过点A的直线与椭圆相交于P、Q两点。

  (1)求椭圆的方程;

  (2)设 ,过点P且平行于准线 的直线与椭圆相交于另一点M,证明 ;

  (3)若 ,求直线PQ的方程。

  【试题答案】

  1. 解:因为 ,且A、M、N三点共线,所以 ,且 ,得N点坐标为

  因为N点在椭圆上,所以即所以

  由

  解得2. 证明:设A( )、B( )( ),则C点坐标为( 、

  因为A、F、B三点共线,所以 ,即

  化简得

  由 ,得

  所以

  即A、O、C三点共线,直线AC经过原点

  3. 解:设 、 、则 、

  ∵ ∴

  即又

  即 (2) ∵ A、M、B三点共线

  ∴

  即

  化简得 ③

  将①②两式代入③式,化简整理,得

  ∵ A、B是异于原点的点 ∴ 故点M的轨迹方程是 ( )为圆心,以4. 方法一:设C(

  由 ,且 ,

  ∴ 又 ∵ ∴

  ∴ 方法二:∵ ,∴ 点C在直线AB上 ∴ C点轨迹为直线AB

  ∵ A(3,1)B( ) ∴ 5. 解:(1) ;(2)A(3,0),

  由已知得 注意解得 ,因F(2,0),M( )故

  而

  (3)设PQ方程为 ,由

  得依题意 ∵

  ∴ ①及 ③

  由①②③④得 ,从而所以直线PQ方程为

高一数学函数的教案12

  教学目标:

  使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.

  教学重点:

  函数的概念,函数定义域的求法.

  教学难点:

  函数概念的理解.

  教学过程:

  Ⅰ.课题导入

  [师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

  (几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).

  设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.

  [师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

  问题一:y=1(xR)是函数吗?

  问题二:y=x与y=x2x 是同一个函数吗?

  (学生思考,很难回答)

  [师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).

  Ⅱ.讲授新课

  [师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.

  在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.

  在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.

  在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.

  请同学们观察3个对应,它们分别是怎样形式的对应呢?

  [生]一对一、二对一、一对一.

  [师]这3个对应的共同特点是什么呢?

  [生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.

  [师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的'集合到函数值y的集合的一种对应关系.

  现在我们把函数的概念进一步叙述如下:(板书)

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.

  记作:y=f(x),xA

  其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.

  一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.

  反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.

  二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.

  函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.

  y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.

  Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.

  [师]理解函数的定义,我们应该注意些什么呢?

  (教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

  注意:①函数是非空数集到非空数集上的一种对应.

  ②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.

  ③集合A中数的任意性,集合B中数的惟一性.

  ④f表示对应关系,在不同的函数中,f的具体含义不一样.

  ⑤f(x)是一个符号,绝对不能理解为f与x的乘积.

  [师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示

  Ⅲ.例题分析

  [例1]求下列函数的定义域.

  (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

  分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.

  解:(1)x-20,即x2时,1x-2 有意义

  这个函数的定义域是{x|x2}

  (2)3x+20,即x-23 时3x+2 有意义

  函数y=3x+2 的定义域是[-23 ,+)

  (3) x+10 x2

  这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).

  注意:函数的定义域可用三种方法表示:不等式、集合、区间.

  从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

  (1)如果f(x)是整式,那么函数的定义域是实数集R;

  (2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

  (3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

  (5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.

  例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.

  由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.

  [师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

  注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.

  下面我们来看求函数式的值应该怎样进行呢?

  [生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.

  [师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

  [生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.

  [师]生乙的回答完整吗?

  [生]完整!(课本上就是如生乙所述那样写的).

  [师]大家说,判定两个函数是否相同的依据是什么?

  [生]函数的定义.

  [师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

  (学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

  (无人回答)

  [师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

  (生恍然大悟,我们怎么就没想到呢?)

  [例2]求下列函数的值域

  (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

  (3)y=x2+4x+3 (-31)

  分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.

  对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.

  对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.

  解:(1)yR

  (2)y{1,0,-1}

  (3)画出y=x2+4x+3(-31)的图象,如图所示,

  当x[-3,1]时,得y[-1,8]

  Ⅳ.课堂练习

  课本P24练习17.

  Ⅴ.课时小结

  本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)

  Ⅵ.课后作业

  课本P28,习题1、2. 文 章来

高一数学函数的教案13

  一、教材分析

  1、教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

  2、教学目标及确立的依据:

  教学目标:

  (1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2)能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

  (3)德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二、新课讲授:

  (1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1.给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的'定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

  并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让判断的方式给出以下关于函数近代定义的注意事项:

  1、函数是非空数集到非空数集的映射。

  2、 f表示对应关系,在不同的函数中f的具体含义不一样。

  3、f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  4、集合a中的数的任意性,集合b中数的唯一性。

  5、“f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

  三、讲解例题

  例1.问y=1(x∈a)是不是函数?

  解:y=1可以化为y=0xx+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导从集合,映射的观点认识函数的定义。

  四、课时小结:

  1.映射的定义。

  2.函数的近代定义。

  3.函数的三要素及符号的正确理解和应用。

  4.函数近代定义的五大注意点。

高一数学函数的教案14

  教材分析:

  “指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的.作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.

  学情分析:

  通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想.另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会.

  教学目标:

  知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小.

  过程与方法:

  (1) 体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法;

  (2) 从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质.

  情感、态度与价值观:

  (1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣;

  (2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣.

  教学重点:指数函数的图象和性质

  教学难点:指数函数概念的引入及指数函数性质的`应用

  教法研究:

  本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识.

  利用函数图象来研究函数性质是函数中的一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法 同时运用现代信息技术学习、探索和解决问题,帮助学生理解新知识

  本节课使用的教学方法有:直观教学法、启发引导法、发现法

  教学过程:

  一、问题情境 :

  问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?

  问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的 ,设该物质的初始质量为1,经过 年后的剩余质量为 ,你能写出 之间的函数关系式吗?

  分析可知,函数的关系式分别是 与

  问题3:在问题1和2中,两个函数的自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办?

  这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数.

  二、数学建构 :

  1]定义:

  一般地,函数 叫做指数函数,其中 .

  问题4:为什么规定 ?

  问题5:你能举出指数函数的例子吗?

  阅读材料(“放射性碳法”测定古物的年代):

  在动植物体内均含有微量的放射性 ,动植物死亡后,停止了新陈代谢, 不在产生,且原有的 会自动衰变.经过5740年( 的半衰期),它的残余量为原来的一半.经过科学测定,若 的原始含量为1,则经过x年后的残留量为 = .

  这种方法经常用来推算古物的年代.

  练习1:判断下列函数是否为指数函数.

  (1) (2)

  (3) (4)

  说明:指数函数的解析式y= 中, 的系数是1.

  有些函数貌似指数函数,实际上却不是,如y= +k (a>0且a 1,k Z);

  有些函数看起来不像指数函数,实际上却是,如y= (a>0,且a 1),因为它可以化为y= ,其中 >0,且 1

  2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成

  问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?

  函数的定义域,值域,单调性,奇偶性等;

  利用函数图象研究函数的性质

  问题7:作函数图象的一般步骤是什么?

  列表,描点,作图

  探究活动1:用列表描点法作出 , 的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察.

  引导学生分析图象并总结此时指数函数的性质(底数大于1):

  (1)定义域?R

  (2)值域?函数的值域为

  (3)过哪个定点?恒过 点,即

  (4)单调性? 时, 为 上的增函数

  (5)何时函数值大于1?小于1? 当 时, ;当 时,

  问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗?

  (引导学生自我分析和反思,培养学生的反思能力和解决问题的能力).

  根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较.

  问题9:到现在,你能自制一份表格,比较 及 两种不同情况下 的图象和性质吗?

  (学生完成表格的设计,教师适当引导)

高一数学函数的教案15

  一、教学内容:椭圆的方程

  要求:理解椭圆的标准方程和几何性质.

  重点:椭圆的方程与几何性质.

  难点:椭圆的方程与几何性质.

  二、点:

  1、椭圆的定义、标准方程、图形和性质

  定 义

  第一定义:平面内与两个定点 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距

  第二定义:

  平面内到动点距离与到定直线距离的比是常数e.(0

  标准方程

  焦点在x轴上

  焦点在y轴上

  图 形

  焦点在x轴上

  焦点在y轴上

  性 质

  焦点在x轴上

  范 围:

  对称性: 轴、 轴、原点.

  顶点: , .

  离心率:e

  概念:椭圆焦距与长轴长之比

  定义式:

  范围:

  2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a

  (2)余弦定理: + -2r1r2cos(3)面积: = r1r2 sin ?2c y0 (其中P( )

  三、基础训练:

  1、椭圆 的标准方程为 ,焦点坐标是 ,长轴长为___2____,短轴长为2、椭圆 的值是__3或5__;

  3、两个焦点的坐标分别为 ___;

  4、已知椭圆 上一点P到椭圆一个焦点 的距离是7,则点P到另一个焦点5、设F是椭圆的一个焦点,B1B是短轴, ,则椭圆的离心率为6、方程 =10,化简的结果是 ;

  满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为

  8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系 顶点 ,顶点 在椭圆 上,则10、已知点F是椭圆 的右焦点,点A(4,1)是椭圆内的一点,点P(x,y)(x≥0)是椭圆上的一个动点,则 的最大值是 8 .

  【典型例题】

  例1、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程.

  解:设方程为 .

  所求方程为

  (2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.

  解:设方程为 .

  所求方程为(3)已知三点P,(5,2),F1 (-6,0),F2 (6,0).设点P,F1,F2关于直线y=x的对称点分别为 ,求以 为焦点且过点 的椭圆方程 .

  解:(1)由题意可设所求椭圆的标准方程为 ∴所以所求椭圆的标准方程为(4)求经过点M( , 1)的椭圆的标准方程.

  解:设方程为

  例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心) 为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且 、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km).

  解:建立如图所示直角坐标系,使点A、B、 在 轴上,

  则 =OA-O = A=6371+439=6810

  解得 =7782.5, =972.5

  卫星运行的轨道方程为

  例3、已知定圆

  分析:由两圆内切,圆心距等于半径之差的绝对值 根据图形,用符号表示此结论:

  上式可以变形为 ,又因为 ,所以圆心M的轨迹是以P,Q为焦点的椭圆

  解:知圆可化为:圆心Q(3,0),

  设动圆圆心为 ,则 为半径 又圆M和圆Q内切,所以 ,

  即 ,故M的轨迹是以P,Q为焦点的椭圆,且PQ中点为原点,所以 ,故动圆圆心M的轨迹方程是:

  例4、已知椭圆的焦点是 |和|(1)求椭圆的方程;

  (2)若点P在第三象限,且∠ =120°,求 .

  选题意图:综合考查数列与椭圆标准方程的基础知识,灵活运用等比定理进行解题.

  解:(1)由题设| |=2| |=4

  ∴ , 2c=2, ∴b=∴椭圆的方程为 .

  (2)设∠ ,则∠ =60°-θ

  由正弦定理得:

  由等比定理得:

  整理得: 故

  说明:曲线上的点与焦点连线构成的三角形称曲线三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.对于第二问还可用后面的几何性质,借助焦半径公式余弦定理把P点横坐标先求出来,再去解三角形作答

  例5、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向 轴作垂线段PP?@,求线段PP?@的中点M的轨迹(若M分 PP?@之比为 ,求点M的轨迹)

  解:(1)当M是线段PP?@的中点时,设动点 ,则 的坐标为

  因为点 在圆心为坐标原点半径为2的圆上,

  所以有 所以点

  (2)当M分 PP?@之比为 时,设动点 ,则 的坐标为

  因为点 在圆心为坐标原点半径为2的圆上,所以有 ,

  即所以点

  例6、设向量 =(1, 0), =(x+m) +y =(x-m) +y + (I)求动点P(x,y)的轨迹方程;

  (II)已知点A(-1, 0),设直线y= (x-2)与点P的轨迹交于B、C两点,问是否存在实数m,使得 ?若存在,求出m的值;若不存在,请说明理由.

  解:(I)∵ =(1, 0), =(0, 1), =6

  上式即为点P(x, y)到点(-m, 0)与到点(m, 0)距离之和为6.记F1(-m, 0),F2(m, 0)(0

  ∴ PF1+PF2=6>F1F2

  又∵x>0,∴P点的轨迹是以F1、F2为焦点的椭圆的右半部分.

  ∵ 2a=6,∴a=3

  又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2

  ∴ 所求轨迹方程为 (x>0,0<m<3)

  ( II )设B(x1, y1),C(x2, y2),

  ∴∴ 而y1y2= (x1-2)? (x2-2)

  = [x1x2-2(x1+x2)+4]

  ∴ [x1x2-2(x1+x2)+4]

  = [10x1x2+7(x1+x2)+13]

  若存在实数m,使得 成立

  则由 [10x1x2+7(x1+x2)+13]=

  可得10x1x2+7(x1+x2)+10=0 ①

  再由

  消去y,得(10-m2)x2-4x+9m2-77=0 ②

  因为直线与点P的轨迹有两个交点.

  所以

  由①、④、⑤解得m2= <9,且此时△>0

  但由⑤,有9m2-77= <0与假设矛盾

  ∴ 不存在符合题意的实数m,使得

  例7、已知C1: ,抛物线C2:(y-m)2=2px (p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.

  (Ⅰ)当AB⊥x轴时,求p、m的值,并判断抛物线C2的焦点是否在直线AB上;

  (Ⅱ)若p= ,且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.

  解:(Ⅰ)当AB⊥x轴时,点A、B关于x轴对称,所以m=0,直线AB的方程为x=1,从而点A的坐标为(1, )或(1,- ).

  ∵点A在抛物线上,∴

  此时C2的焦点坐标为( ,0),该焦点不在直线AB上.

  (Ⅱ)当C2的焦点在AB上时,由(Ⅰ)知直线AB的斜率存在,设直线AB的方程为y=k(x-1).

  由 (kx-k-m)2= ①

  因为C2的焦点F( ,m)在y=k(x-1)上.

  所以k2x2- (k2+2)x+ =0 ②

  设A(x1,y1),B(x2,y2),则x1+x2=

  由

  (3+4k2)x2-8k2x+4k2-12=0 ③

  由于x1、x2也是方程③的两根,所以x1+x2=

  从而 = k2=6即k=±

  又m=- ∴m= 或m=-

  当m= 时,直线AB的方程为y=- (x-1);

  当m=- 时,直线AB的方程为y= (x-1).

  例8、已知椭圆C: (a>0,b>0)的左、右焦点分别是F1、F2,离心率为e.直线l:y=ex+a与x轴,y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设 = .

  (Ⅰ)证明:(Ⅱ)若 ,△MF1F2的'周长为6,写出椭圆C的方程;

  (Ⅲ)确定解:(Ⅰ)因为A、B分别为直线l:y=ex+a与x轴、y轴的交点,所以A、B的坐标分别是A(- ,0),B(0,a).

  由 得 这里∴M = ,a)

  即 解得

  (Ⅱ)当 时, ∴a=2c

  由△MF1F2的周长为6,得2a+2c=6

  ∴a=2,c=1,b2=a2-c2=3

  故所求椭圆C的方程为

  (Ⅲ)∵PF1⊥l ∴∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有PF1=F1F2,即 PF1=C.

  设点F1到l的距离为d,由

  PF1= =得: =e ∴e2= 于是

  即当(注:也可设P(x0,y0),解出x0,y0求之)

  【模拟】

  一、选择题

  1、动点M到定点 和 的距离的和为8,则动点M的轨迹为 ( )

  A、椭圆 B、线段 C、无图形 D、两条射线

  2、设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是 ( )

  A、 C、2- -1

  3、(20xx年高考湖南卷)F1、F2是椭圆C: 的焦点,在C上满足PF1⊥PF2的点P的个数为( )

  A、2个 B、4个 C、无数个 D、不确定

  4、椭圆 的左、右焦点为F1、F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为 ( )

  A、32 B、16 C、8 D、4

  5、已知点P在椭圆(x-2)2+2y2=1上,则 的最小值为( )

  A、 C、

  6、我们把离心率等于黄金比 是优美椭圆,F、A分别是它的左焦点和右顶点,B是它的短轴的一个端点,则 等于( )

  A、 C、

  二、填空题

  7、椭圆 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .

  8、设F是椭圆 的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2, ),使得FP1、FP2、FP3…组成公差为d的等差数列,则d的取值范围是 .

  9、设 , 是椭圆 的两个焦点,P是椭圆上一点,且 ,则得 .

  10、若椭圆 =1的准线平行于x轴则m的取值范围是

  三、解答题

  11、根据下列条件求椭圆的标准方程

  (1)和椭圆 共准线,且离心率为 .

  (2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为 和 ,过P作长轴的垂线恰好过椭圆的一个焦点.

  12、已知 轴上的一定点A(1,0),Q为椭圆 上的动点,求AQ中点M的轨迹方程

  13、椭圆 的焦点为 =(3, -1)共线.

  (1)求椭圆的离心率;

  (2)设M是椭圆上任意一点,且 = 、 ∈R),证明 为定值.

  【试题答案】

  1、B

  2、D

  3、A

  4、B

  5、D(法一:设 ,则y=kx代入椭圆方程中得:(1+2k2)x2-4x+3=0,由△≥0得: .法二:用椭圆的参数方程及三角函数的有界性求解)

  6、C

  7、( ;(0, );6;10;8; ; .

  8、 ∪

  9、

  10、m< 且m≠0.

  11、(1)设椭圆方程 .

  解得 , 所求椭圆方程为(2)由 .

  所求椭圆方程为 的坐标为

  因为点 为椭圆 上的动点

  所以有

  所以中点

  13、解:设P点横坐标为x0,则 为钝角.当且仅当 .

  14、(1)解:设椭圆方程 ,F(c,0),则直线AB的方程为y=x-c,代入 ,化简得:

  x1x2=

  由 =(x1+x2,y1+y2), 共线,得:3(y1+y2)+(x1+x2)=0,

  又y1=x1-c,y2=x2-c

  ∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=

  即 = ,∴ a2=3b2

  ∴ 高中地理 ,故离心率e= .

  (2)证明:由(1)知a2=3b2,所以椭圆 可化为x2+3y2=3b2

  设 = (x2,y2),∴ ,

  ∵M∴ ( )2+3( )2=3b2

  即: )+ (由(1)知x1+x2= ,a2= 2,b2= c2.

  x1x2= = 2

  x1x2+3y1y2=x1x2+3(x1-c)(x2-c)

  =4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0

  又 =3b2代入①得

  为定值,定值为1.

【高一数学函数的教案】相关文章:

高一数学函数的教案08-26

高一数学教案函数12-28

高一数学教案《函数概念》11-20

高一数学对数函数教案08-26

高一数学指数函数教案12-09

高一数学函数的教案15篇01-12

高一数学函数的教案(15篇)01-13

数学函数的教案03-06

高一数学教案函数15篇12-30