现在位置:范文先生网>教案大全>数学教案>高中数学教案

高中数学教案

时间:2024-07-27 12:01:51 数学教案 我要投稿

高中数学教案【合集15篇】

  在教学工作者开展教学活动前,就有可能用到教案,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!以下是小编整理的高中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学教案【合集15篇】

高中数学教案1

  教学目标:

  1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

  2、通过观察、操作培养学生的观察能力和动手操作能力。

  3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

  4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

  教学重点:

  理解角的概念,掌握角的三种表示方法

  教学难点:

  掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

  教学手段:

  教具:电脑课件、实物投影、量角器

  学具:量角器需测量的角

  教学过程:

  一、建立角的概念

  (一)引入角(利用课件演示)

  1、从生活中引入

  提问:

  A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

  B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

  2、从射线引入

  提问:

  A、昨天我们认识了射线,想从一点可以引出多少条射线?

  B、如果从一点出发任意取两条射线,那出现的是什么图形?

  C、哪两条射线可以组成一个角?谁来指一指。

  (二)认识角,总结角的定义

  3、 过渡:角是怎么形成的呢?一起看

  (1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

  提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?

  (2)、判断下列哪些图形是角。

  (√) (×) (√) (×) (√)

  为何第二幅和第四幅图形不是角?(学生回答)

  谁能用自己的话来概括一下怎样组成的图形叫做角?

  总结:有公共端点的两条射线所组成的图形叫做角(angle)

  角的`第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

  B

  0 A

  4、认识角的各部分名称,明确顶点、边的作用

  (1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

  (2)角可以画在本上、黑板上,那角的位置是由谁决定的?

  (3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

  5、学会用符号表示角

  提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

  (1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

  (2)观察这两种方法,有什么特点?(字母B都在中间)

  (3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

  (4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

  (5)注:区别 “∠”和“<”的不同。请同学们指着用学具折出的一个角,训练一下这三种读法。

  6、强调角的大小与两边张开的程度有关,与两条边的长短无关。

  二、 角的度量

  1、学习角的度量

  (1)教学生认识量角器

  (2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。

  提出要求:小组合作边学习测量方法边尝试测量

  第一个角,想想有几种方法?

  1、要求合作学习探究、测量。

  2、反馈汇报:学生边演示边复述过程

  3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。

  4、归纳概括测量方法(两重合一对)

  (1)用量角器的中心点与角的顶点重合

  (2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合)

  (3)另一条边所对的角的度数,就是这个角的度数。

  5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。

  6、独立练习测量角的度数(书做一做中第一题1,3与第二题)

  (1) 独立测量,师注意查看学生中存在的问题。

  (2) 课件演示纠正问题

  三、度、分、秒的进位制及这些单位间的互化

  为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 将57.32°用度、分、秒表示.

  解:先把0.32°化为分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化为秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化为分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化为度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、巩固练习

  课本P122练习

  五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么?

  六、作业:课本P123 3、4.(1)(3)、5.(2)(4)

高中数学教案2

  教学目的:掌握圆的标准方程,并能解决与之有关的问题

  教学重点:圆的标准方程及有关运用

  教学难点:标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的'方程(突出待定系数的数学方法)

  练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高中数学教案3

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的一般方程及标准圆方程的'关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案4

  教学目标:

  1、理解并掌握曲线在某一点处的切线的概念;

  2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

  3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

  问题的能力及数形结合思想。

  教学重点:

  理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

  教学难点:

  用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

  教学过程:

  一、问题情境

  1、问题情境。

  如何精确地刻画曲线上某一点处的变化趋势呢?

  如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

  如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

  因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。

  2、探究活动。

  如图所示,直线l1,l2为经过曲线上一点P的两条直线,

  (1)试判断哪一条直线在点P附近更加逼近曲线;

  (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

  (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

  二、建构数学

  切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

  思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  三、数学运用

  例1 试求在点(2,4)处的切线斜率。

  解法一 分析:设P(2,4),Q(xQ,f(xQ)),

  则割线PQ的斜率为:

  当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

  当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

  从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

  解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

  练习 试求在x=1处的切线斜率。

  解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

  小结 求曲线上一点处的切线斜率的一般步骤:

  (1)找到定点P的坐标,设出动点Q的坐标;

  (2)求出割线PQ的斜率;

  (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

  思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  解 设

  所以,当无限趋近于0时,无限趋近于点处的'切线的斜率。

  变式训练

  1。已知,求曲线在处的切线斜率和切线方程;

  2。已知,求曲线在处的切线斜率和切线方程;

  3。已知,求曲线在处的切线斜率和切线方程。

  课堂练习

  已知,求曲线在处的切线斜率和切线方程。

  四、回顾小结

  1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

  2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

  五、课外作业

高中数学教案5

  教学要求:

  理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。

  教学重点:

  熟练地求交点。

  教学过程:

 一、复习准备:

  1、直线A x+B+C=0与直线A x+B+C=0,平行的充要条件是xx,相交的充要条件是xx;

  重合的充要条件是xx,垂直的充要条件是xx。

  2、知识回顾:充分条件、必要条件、充要条件。

二、讲授新课:

  1、教学例题:

  ①出示例:求直线=x+1截曲线=x所得线段的中点坐标。

  ②由学生分析求解的思路→学生练→老师评讲

  (联立方程组→消用韦达定理求x坐标→用直线方程求坐标)

  ③试求→订正→小结思路。→变题:求弦长

  ④出示例:当b为何值时,直线=x+b与曲线x+=4分别相交?相切?相离?

  ⑤分析:三种位置关系与两曲线的交点情况有何关系?

  ⑥学生试求→订正→小结思路。

  ⑦讨论其它解法?

  解一:用圆心到直线的`距离求解;

  解二:用数形结合法进行分析。

  ⑧讨论:两条曲线F(x,)=0与F(x,)=0相交的充要条件是什么?

  如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?

  (联立方程组后,一解时:相切或相交;二解时:相交;无解时:相离)

  2、练习:

  求过点(—2,—)且与抛物线=x相切的直线方程。

三、巩固练习:

  1、若两直线x+=3a,x-=a的交点在圆x+=5上,求a的值。

  (答案:a=±1)

  2、求直线=2x+3被曲线=x截得的线段长。

  3、课堂作业:书P72 3、4、10题。

高中数学教案6

  教学目标

  (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

  (2)理解直线与二元一次方程的关系及其证明

  (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

  教学重点、难点:直线方程的一般式.直线与二元一次方程 ( 、 不同时为0)的对应关系及其证明.

  教学用具:计算机

  教学方法:启发引导法,讨论法

  教学过程

  下面给出教学实施过程设计的简要思路:

  教学设计思路

  (一)引入的设计

  前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

  问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

  问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

  启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

  学生纷纷谈出自己的.想法,教师边评价边启发引导,使学生的认识统一到如下问题:

  【问题1】“任意直线的方程都是二元一次方程吗?”

  (二)本节主体内容教学的设计

  这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

  学生或独立研究,或合作研究,教师巡视指导.

  经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

  思路一:…

  思路二:…

  ……

  教师组织评价,确定最优方案(其它待课下研究)如下:

  按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.

  当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.

  当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?

  学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

  平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  综合两种情况,我们得出如下结论:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.

  至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”.

  同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

  学生们不难得出:二者可以概括为统一的形式.

  这样上边的结论可以表述如下:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.

  启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

  【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?

  不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

  师生共同讨论,评价不同思路,达成共识:

  回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中 、 不同时为0)系数 是否为0恰好对应斜率 是否存在,即

  (1)当 时,方程可化为

  这是表示斜率为 、在 轴上的截距为 的直线.

  (2)当 时,由于 、 不同时为0,必有 ,方程可化为

  这表示一条与 轴垂直的直线.

  因此,得到结论:

  在平面直角坐标系中,任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线.

  为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.

  【动画演示】

  演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.

  至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

  (三)练习巩固、总结提高、板书和作业等环节的设计

  略

高中数学教案7

  教学目标

  (1)了解算法的含义,体会算法思想。

  (2)会用自然语言和数学语言描述简单具体问题的算法;

  (3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。

  教学重难点

  重点:算法的含义、解二元一次方程组的算法设计。

  难点:把自然语言转化为算法语言。

  情境导入

  电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

  第一步:观察、等待目标出现(用望远镜或瞄准镜);

  第二步:瞄准目标;

  第三步:计算(或估测)风速、距离、空气湿度、空气密度;

  第四步:根据第三步的结果修正弹着点;

  第五步:开枪;

  第六步:迅速转移(或隐蔽)

  以上这种完成狙击任务的方法、步骤在数学上我们叫算法。

  课堂探究

  预习提升

  1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。

  2、描述方式

  自然语言、数学语言、形式语言(算法语言)、框图。

  3、算法的要求

  (1)写出的算法,必须能解决一类问题,且能重复使用;

  (2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。

  4、算法的特征

  (1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。

  (2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。

  (3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。

  (4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。

  (5)不唯一性:解决同一问题的算法可以是不唯一的

  课堂典例讲练

  命题方向1对算法意义的理解

  例1、下列叙述中,

  ①植树需要运苗、挖坑、栽苗、浇水这些步骤;

  ②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;

  ③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;

  ④3x>x+1;

  ⑤求所有能被3整除的正数,即3,6,9,12。

  能称为算法的个数为(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。

  【答案】B

  [规律总结]

  1、正确理解算法的概念及其特点是解决问题的关键、

  2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、

  【变式训练】下列对算法的理解不正确的是________

  ①一个算法应包含有限的步骤,而不能是无限的

  ②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤

  ③算法中的每一步都应当有效地执行,并得到确定的结果

  ④一个问题只能设计出一个算法

  【解析】由算法的有限性指包含的步骤是有限的故①正确;

  由算法的明确性是指每一步都是确定的故②正确;

  由算法的每一步都是确定的,且每一步都应有确定的.结果故③正确;

  由对于同一个问题可以有不同的算法故④不正确。

  【答案】④

  命题方向2解方程(组)的算法

  例2、给出求解方程组的一个算法。

  [思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、

  [规范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程组可化为

  第二步,解方程③,可得y=-1,④

  第三步,将④代入①,可得2x-1=7,x=4

  第四步,输出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,输出4,-1

  [规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。

  2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。

  【变式训练】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命题方向3筛选问题的算法设计

  例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、

  [思路分析]比较a,b比较m与c―→最小数

  [规范解答]算法步骤如下:

  1、比较a与b的大小,若a

  2、比较m与c的大小,若m

  [规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。

  【变式训练】在下列数字序列中,写出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一个数m,m=21;

  2、将m与89比较,是否相等,如果相等,则搜索到89;

  3、如果m与89不相等,则往下执行;

  4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。

  命题方向4非数值性问题的算法

  例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。

  (1)设计安全渡河的算法;

  (2)思考每一步算法所遵循的共同原则是什么?

高中数学教案8

  一、预习目标

  预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。

  二、预习内容

  阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:

  1、例1如果不用向量的方法,还有其他证明方法吗?

  2、利用向量方法解决平面几何问题的“三步曲”是什么?

  3、例3中,

  ⑴为何值时,|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|吗?为什么?

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容。

  课内探究学案

  一、学习内容

  1、运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题。

  2、运用向量的有关知识解决简单的物理问题。

  二、学习过程

  探究一:

  (1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?

  (2)举出几个具有线性运算的几何实例。

  例1、证明:平行四边形两条对角线的平方和等于四条边的平方和。

  已知:平行四边形ABCD。

  求证:

  试用几何方法解决这个问题,利用向量的方法解决平面几何问题的“三步曲”?

  (1)建立平面几何与向量的联系,

  (2)通过向量运算,研究几何元素之间的关系,

  (3)把运算结果“翻译”成几何关系。

  例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?

  探究二:两个人提一个旅行包,夹角越大越费力。在单杠上做引体向上运动,两臂夹角越小越省力。这些力的问题是怎么回事?

  例3,在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的'夹角越小越省力。你能从数学的角度解释这种现象吗?

  请同学们结合刚才这个问题,思考下面的问题:

  ⑴为何值时,|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|吗?为什么?

  例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0。1min)?

  变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。

  三、反思总结

  结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题。

  代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。

  本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。

高中数学教案9

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题 创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括 建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影] 与 的关系如何?

  (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

  第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

  第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  【例题示范 探求方法】

  (教师活动)打出字幕,给出示范,指导训练.

  [字幕]例1 列举从4个元素 中任取2个元素的所有组合.

  例2 计算:(1) ;(2) .

  (学生活动)板演、示范.

  (教师活动)讲评并指出用两种方法计算例2的第2小题.

  [字幕]例3 已知 ,求 的所有值.

  (学生活动)思考分析.

  解 首先,根据组合的.定义,有

  ①

  其次,由原不等式转化为

  即

  解得 ②

  综合①、②,得 ,即

  [点评]这是组合数公式的应用,关键是公式的选择.

  设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

  【反馈练习 学会应用】

  (教师活动)给出练习,学生解答,教师点评.

  [课堂练习]课本P99练习第2,5,6题.

  [补充练习]

  [字幕]1.计算:

  2.已知 ,求 .

  (学生活动)板演、解答.

  设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

高中数学教案10

  教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

  (5)进一步理解数形结合的思想方法。

  教学建议

  教材分析

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

  (2)重点、难点分析

  ①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

  ②本节的难点是曲线方程的概念和求曲线方程的方法。

  教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的`问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

  (4)从集合与对应的观点可以看得更清楚:

  设 表示曲线 上适合某种条件的点 的集合;

  表示二元方程的解对应的点的坐标的集合。

  可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

  文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

高中数学教案11

  一、向量的概念

  1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

  2、叫做单位向量

  3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

  4、且的向量叫做相等向量

  5、叫做相反向量

  二、向量的表示方法:

  几何表示法、字母表示法、坐标表示法

  三、向量的加减法及其坐标运算

  四、实数与向量的乘积

  定义:实数 λ 与向量 的积是一个向量,记作λ

  五、平面向量基本定理

  如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

  六、向量共线/平行的充要条件

  七、非零向量垂直的充要条件

  八、线段的定比分点

  设是上的 两点,p是上xx的任意一点,则存在实数,使xxx,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点

  定比分点坐标公式及向量式

  九、平面向量的数量积

  (1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

  (2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ

  (3)平面向量的数量积的坐标表示

  十、平移

  典例解读

  1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

  其中,正确命题的'序号是xx

  2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=xxxx

  3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为xx

  4、下列算式中不正确的是( )

  (a) ab+bc+ca=0 (b) ab-ac=bc

  (c) 0·ab=0 (d)λ(μa)=(λμ)a

  5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

  ?函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )

  (a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

  7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )

  (a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

  (c)2x-y=0 (d)x+2y-5=0

  8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=xx

  9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长

  10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

  (a)-5 (b)5 (c)7 (d)-1

  11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

  (a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

  (c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0

  12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

  (a)2 (b)0 (c)1 (d)2

  16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)

  17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值

  18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量

高中数学教案12

  教学目标

  1.了解映射的概念,象与原象的概念,和一一映射的概念.

  (1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

  (2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

  (3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

  2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

  3.通过映射概念的学习,逐步提高学生对知识的探究能力.

  教学建议

  教材分析

  (1)知识结构

  映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

  由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

  (2)重点,难点分析

  本节的教学重点和难点是映射和一一映射概念的形成与认识.

  ①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

  映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

  ②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

  教法建议

  (1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

  (2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

  (3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的`特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

  (4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

  (5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

  教学设计方案

  2.1映射

  教学目标(1)了解映射的概念,象与原象及一一映射的概念.

  (2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

  (3)通过映射概念的学习,逐步提高学生的探究能力.

  教学重点难点::映射概念的形成与认识.

  教学用具:实物投影仪

  教学方法:启发讨论式

  教学过程:

  一、引入

  在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

  二、新课

  在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

  我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

  提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

  让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

  提问2:能用自己的语言描述一下这几个对应的共性吗?

  经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

高中数学教案13

  教学目标:

  1.进一步熟练掌握比较法证明不等式;

  2.了解作商比较法证明不等式;

  3.提高学生解题时应变能力.

  教学重点

  比较法的应用

  教学难点

  常见解题技巧

  教学方法启发引导式

  教学活动

  (一)导入新课

  (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评.

  (学生活动)思考问题,回答.

  [字幕]1.比较法证明不等式的步骤是怎样的?

  2.比较法证明不等式的步骤中,依据、手段、目的各是什么?

  3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗?

  [点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题)

  设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容.

  (二)新课讲授

  【尝试探索,建立新知】

  (教师活动)提出问题,引导学生研究解决问题,并点评.

  (学生活动)尝试解决问题.

  [问题]

  1.化简

  2.比较与()的大小.

  (学生解答问题)

  [点评]

  ①问题1,我们采用了因式分解的方法进行简化.

  ②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小.

  设计意图:启发学生研究问题,建立新知,形成新的知识体系.

  【例题示范,学会应用】

  (教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程.

  (学生活动)分析,研究问题.

  [字幕]例题3已知 a b 是正数,且,求证

  [分析]依题目特点,作差后重新组项,采用因式分解来变形.

  证明:(见课本)

  [点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范.

  [点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学 思想方法.要理解为什么分类,怎样分类.分类时要不重不漏.

  [字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度 m 行走,另一半时间以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,问甲、乙两人谁先到达指定地点.

  [分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为,要回答题目中的问题,只要比较、的大小就可以了.

  解:(见课本)

  [点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质.

  设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力.

  【课堂练习】

  (教师活动)教师打出字幕练习,要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题.

  (学生活动)在笔记本上完成练习,甲、乙两位同学板演.

  [字幕]练习:1.设,比较与的大小.

  2.已知,求证

  设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学.

  【分析归纳、小结解法】

  (教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤.

  (学生活动)与教师一道小结,并记录在笔记本上.

  1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法.

  2.对差式变形的常用方法有:配方法,通分法,因式分解法等.

  3.会用分类讨论的方法确定差式的符号.

  4.利用不等式解决实际问题的`解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答.

  设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系.

  (三)小结

  (教师活动)教师小结本节课所学的知识及数学 思想与方法.

  (学生活动)与教师一道小结,并记录笔记.

  本节课学习了对差式变形的一种常用方法因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题.

  通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力.

  设计意图:培养学生对所学的知识进行概括归纳的能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学 思想方法.

  (四)布置作业

  1.课本作业:P17 7、8。

  2,思考题:已知,求证

  3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变)

  设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力.

  (五)课后点评

  1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动.

  2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用

高中数学教案14

  教学目标

  1使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;

  2对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;

  3掌握本章的全部定理和公理;

  4理解本章的数学思想方法;

  5了解本章的题目类型。

  教学重点和难点

  重点是理解本章的知识结构,掌握本章的全部定和公理;难点是理解本章的数学思想方法。

  教学设计过程

  一、本章的知识结构

  二、本章中的概念

  1直线、射线、线段的概念。

  2线段的中点定义。

  3角的两个定义。

  4直角、平角、周角、锐角、钝角的概念。

  5互余与互补的角。

  三、本章中的公理和定理

  1直线的公理;线段的公理。

  2补角和余角的性质定理。

  四、本章中的主要习题类型

  1对直线、射线、线段的概念的理解。

  例1下列说法中正确的是( )。

  A延长射线OP B延长直线CD

  C延长线段CD D反向延长直线CD

  解:C因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的。而线段有两个端点,可以向两方延长。

  例2如图1-57中的线段共有多少条?

  解:15条,它们是:线段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。

  2线段的和、差、倍、分。

  例3已知线段AB,延长AB到C,使AC=2BC,反向延长AB到D使AD= BC,那么线段AD是线段AC的( )。

  A.B. C. D.

  解:B如图1-58,因为AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如图1-59,B为线段AC上的一点,AB=4cm,BC=3cm,M,N分别为AB,BC的中点,求MN的长。

  解:因为AB=4,M是AB的中点,所以MB=2,又因为N是BC的中点,所以BN=1.5。则MN=2+1.5=3.5

  3角的概念性质及角平分线。

  例5如图1-60,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的度数。

  解:因为OD是∠AOB的平分线,所以∠BOD= ∠AOB;又因为OE是∠BOC的平分线,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  则∠EOD=90°。

  例6如图1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC与∠COB的`度数的比是多少?

  解:因为∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  则∠AOC=60°,(同角的余角相等)

  ∠AOC与∠COB的度数的比是2∶1。

  4互余与互补角的性质。

  例7如图1-62,直线AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度数。

  解:因为COD为直线,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB为直线,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB为直线,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一个角是另一个角的3倍,且小有的余角与大角的余角之差为20°,求这两个角的度数。

  解:设第一个角为x°,则另一个角为3x°,

  依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一个角为10°,另一个角为30°。

  5度分秒的换算及和、差、倍、分的计算。

  例9 (1)将4589°化成度、分、秒的形式。

  (2)将80°34′45″化成度。

  (3)计算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)约为8058°。

  (3)约为9°44′11″(第一步,做减法后得12°58′55″;再做乘法后得36°174′165″,可以先不进位,做除法后得9°44′11″)

  五、本章中所学到的数学思想

  1运动变化的观点:几何图形不是孤立和静止的,也应看作不断发展和变化的,如线段向一个方向延长,就发展成为射线;射线向另一方向延长就发展成直线。又如射线饶它的端点旋转就形成角;角的终边不断旋转就变化成直角、平角和周角。从图形的运动中可以看到变化,从变化中看到联系和区别及特性。

  2数形结合的思想:在几何的知识中经常遇到计算问题,对形的研究离不开数。正如数学家华罗庚所说:“数缺形时少直观,形缺数时难如微”。本章的知识中,将线段的长度用数量表示,利用方程的方法解决余角与补角的问题。因此我们对几何的学习不能与代数的学习截然分开,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,都会给问题的解决带来新的思路。从几何的起始课,就注意数形结合,就会养成良好的思维习惯。

  3联系实际,从实际事物中抽象出数学模型。数学的产生来源于生产和生活实践,因此学习数学不能脱离实际生活,尤其是几乎何的学习更离不开实际生活。一方面要让学生知道本章的主要内容是线和角,都在生活中有大量的原型存在,另一方面又要引导学生将所学的知识去解决某些简单的实际问题,这才是理论联系实际的观点。

  六、本章的疑点和误点分析

  概念在应用中的混淆。

  例10判断正误:

  (1)在∠AOB的边OA的延长线上取一点D。

  (2)大于90°的角是钝角。

  (3)任何一个角都可以有余角。

  (4)∠A是锐角,则∠A的所有余角都相等。

  (5)两个锐角的和一定小于平角。

  (6)直线MN是平角。

  (7)互补的两个角的和一定等于平角。

  (8)如果一个角的补角是锐角,那么这个角就没有余角。

  (9)钝角一定大于它的补角。

  (10)经过三点一定可以画一条直线。

  解:(1)错。因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了。

  (2)错。钝角的定义是:大于直角且小于平角的角,叫做钝角。

  (3)错。余角的定义是:如果两个角的和是一个直角,这两个角互为余角。因此大于直角的角没有余角。

  (4)对.∠A的所有余角都是90°-∠A。

  (5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.

  (6)错。平角是一个角就要有顶点,而直线上没有表示平角顶点的点。如果在直线上标出表示角的顶点的点,就可以了。

  (7)对。符合互补的角的定义。

  (8)对。如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的。

  (9)对。因为钝角的补角是锐角,钝角一定大于锐角。

  (10)错。这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的。如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线。

  板书设计

  回顾与反思

  (一)知识结构(四)主要习题类型(五)本章的数学思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑误点分析

  (三)本章的公理和定理·

  例9

高中数学教案15

  内容分析:

  1、 集合是中学数学的一个重要的基本概念

  在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础

  例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明

  然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念

  学习引言是引发学生的学习兴趣,使学生认识学习本章的意义

  本节课的教学重点是集合的基本概念。

  集合是集合论中的原始的、不定义的概念

  在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识

  教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集

  ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2.教材中的章头引言;

  3.集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)。

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

  (2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…}

  (3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}

  (4)有理数集:全体有理数的.集合,记作Q,Q={整数与分数}

  (5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集,记作N*或N+

  Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写。

【高中数学教案】相关文章:

高中数学教案12-30

高中数学教案02-21

高中数学教案【热门】01-25

高中数学教案【推荐】01-25

高中数学教案【荐】01-25

高中数学教案【热】01-25

高中数学教案模板02-02

高中数学教案优秀12-10

高中数学教案(通用)10-27

高中数学教案(精品)06-28